Project description:Chromatin state influences lifespan and may allow for the epigenetic inheritance of this complex trait. At sites of active transcription, the COMPASS complex methylates histone H3 at lysine 4 (H3K4me). In Caenorhabditis elegans, reductions in COMPASS extend lifespan, and wild-type descendants of COMPASS mutants inherit longevity for four generations. Here we show that the longevity of COMPASS mutants is itself a transgenerational trait caused by gradual changes in the repressive chromatin factor H3K9me2. H3K9me2 is required for longevity in COMPASS mutants and can confer longevity when increased in other chromatin modifier mutants. H3K9me2 levels also correlate with a transgenerational decline in wild-type lifespan after freezing or starvation. We propose that germline transcription-coupled H3K4me encroaches on H3K9me2 to limit lifespan. Loss of COMPASS complex alleviates the burden of H3K4me and therefore extends lifespan. This study suggests a causal role for a single heterochromatin factor in the establishment and inheritance of longevity.
Project description:Chromatin modifiers regulate lifespan in several organisms, raising the question of whether changes in chromatin states in the parental generation could be incompletely reprogrammed in the next generation and thereby affect the lifespan of descendents. The histone H3 lysine 4 trimethylation (H3K4me3) complex composed of ASH-2, WDR-5, and the histone methyltransferase SET-2 regulates C. elegans lifespan. Here we show that deficiencies in the H3K4me3 chromatin modifiers ASH-2, WDR-5, or SET-2 in the parental generation extend the lifespan of descendents up until the third generation. The transgenerational inheritance of lifespan extension by members of the ASH-2 complex is dependent on the H3K4me3 demethylase RBR-2, and requires the presence of a functioning germline in the descendents. Transgenerational inheritance of lifespan is specific for the H3K4me3 methylation complex and is associated with epigenetic changes in gene expression. Thus, manipulation of specific chromatin modifiers only in parents can induce an epigenetic memory of longevity in descendents. There are 35 samples in total. We found that genetically WT descendents from mutants of the H3K4me3 modifying complex had extended longevity up until the F4 generation. Their lifespan returned to WT levels in the F5 generation. We performed microarrays to examine what gene expression differences there were between N2(WT) worms, +/+ (from wdr-5 mutant) worms, and wdr-5/wdr-5 in the F4 and the F5 generation. We analyzed L3 samples from the first and second days of egg laying in triplicate each. Samples consist of ~1000 worms each.
Project description:Chromatin modifiers regulate lifespan in several organisms, raising the question of whether changes in chromatin states in the parental generation could be incompletely reprogrammed in the next generation and thereby affect the lifespan of descendents. The histone H3 lysine 4 trimethylation (H3K4me3) complex composed of ASH-2, WDR-5, and the histone methyltransferase SET-2 regulates C. elegans lifespan. Here we show that deficiencies in the H3K4me3 chromatin modifiers ASH-2, WDR-5, or SET-2 in the parental generation extend the lifespan of descendents up until the third generation. The transgenerational inheritance of lifespan extension by members of the ASH-2 complex is dependent on the H3K4me3 demethylase RBR-2, and requires the presence of a functioning germline in the descendents. Transgenerational inheritance of lifespan is specific for the H3K4me3 methylation complex and is associated with epigenetic changes in gene expression. Thus, manipulation of specific chromatin modifiers only in parents can induce an epigenetic memory of longevity in descendents.
Project description:Gene silencing mediated by dsRNA (RNAi) can persist for multiple generations in C. elegans (termed RNAi inheritance). Here we describe the results of a forward genetic screen in C. elegans that has identified six factors required for RNAi inheritance: GLH-1/VASA, PUP-1/CDE-1, MORC-1, SET-32, and two novel nematode-specific factors that we term here (heritable RNAi defective) HRDE-2 and HRDE-4. The new RNAi inheritance factors exhibit mortal germline (Mrt) phenotypes, which we show is likely caused by epigenetic deregulation in germ cells. We also show that HRDE-2 contributes to RNAi inheritance by facilitating the binding of small RNAs to the inheritance Argonaute (Ago) HRDE-1. Together, our results identify additional components of the RNAi inheritance machinery whose sequence conservation provides insights into the molecular mechanism of RNAi inheritance, further our understanding of how the RNAi inheritance machinery promotes germline immortality, and show that HRDE-2 couples the inheritance Ago HRDE-1 with the small RNAs it needs to direct RNAi inheritance and germline immortality.
Project description:Some epigenetic modifications are inherited from one generation to the next, providing a potential mechanism for the inheritance of environmentally acquired traits. Transgenerational inheritance of RNA interference phenotypes in C. elegans provides an excellent model to study this phenomenon, and whilst studies have implicated both chromatin modifications and small RNA pathways in heritable silencing their relative contributions remain unclear. Here we demonstrate that the histone methyltransferases SET-25 and SET-32 are required for the establishment of a transgenerational silencing signal, but not for long-term maintenance of this signal between subsequent generations suggesting that transgenerational epigenetic inheritance is a multi-step process, with distinct genetic requirements for establishment and maintenance of heritable silencing. Furthermore, small RNA sequencing reveals that the abundance of secondary siRNA (thought to be the effector molecules of heritable silencing) does not correlate with silencing phenotypes. Together, our results suggest that the current mechanistic models of epigenetic inheritance are incomplete.