Project description:Embryonic stem (ES) cells are used in cell therapy and tissue engineering due to their ability to produce different cells types. However, studies of ES cells that are derived from fertilized embryos have raised concerns about the limitations imposed by ethical and political considerations. Therefore, many studies of ES cells use the ES cells that are derived from unfertilized oocytes and adult tissue. Although parthenogenetic embryonic stem (ESP) cells also avoided ethical and political dilemmas and can be used in cell-based therapy, the ESP cells exhibit growth retardation problems. Therefore, to investigate the potential for muscle growth from genetically modified ESP cells, we established four ES cell types, including normal embryonic stem (ESN) cells, ESP cells, ESP cells that overexpress the Igf2 gene (ESI) and ESP cells with down-regulated H19 gene expression (ESH). Using these cells, we examined the expression profiles of genes that were related to imprinting and muscle using microarrays. Total RNA obtained from isolated genetically modified parthenogenetic mouse embryonic stem cells compared to parthenogenetic mouse embryonic stem cells. 2 Biological Replication.
Project description:Embryonic stem (ES) cells are used in cell therapy and tissue engineering due to their ability to produce different cells types. However, studies of ES cells that are derived from fertilized embryos have raised concerns about the limitations imposed by ethical and political considerations. Therefore, many studies of ES cells use the ES cells that are derived from unfertilized oocytes and adult tissue. Although parthenogenetic embryonic stem (ESP) cells also avoided ethical and political dilemmas and can be used in cell-based therapy, the ESP cells exhibit growth retardation problems. Therefore, to investigate the potential for muscle growth from genetically modified ESP cells, we established four ES cell types, including normal embryonic stem (ESN) cells, ESP cells, ESP cells that overexpress the Igf2 gene (ESI) and ESP cells with down-regulated H19 gene expression (ESH). Using these cells, we examined the expression profiles of genes that were related to imprinting and muscle using microarrays.
Project description:In this study, mRNA expression profiles were examined by Illumina microarray in mouse embryonic stem cells (ESCs) derived from androgenetic (aESC), parthenogenetic (pESC) and fertilized (fESC) blastocysts. Results showed that 2394, 87 and 1788 mRNAs were differentially expressed in the aESCs vs. fESCs, pESCs vs. fESCs and aESCs vs. pESCs, respectively. Androgenetic, parthenogenetic and fertilized embryonic stem cell lines were established from androgenetic, parthenogenetically activated and fertilized blasotocyst. mRNA microarrays were repeated three times using passages 6, 7 and 8.
Project description:In pluripotential reprogramming, a pluripotent state is established within somatic cells. In this study, we have generated induced pluripotent stem (iPS) cells from bi-maternal (uniparental) parthenogenetic neural stem cells (pNSCs) by transduction with four (Oct4, Klf4, Sox2, and c-Myc) or two (Oct4 and Klf4) transcription factors. The parthenogenetic iPS (piPS) cells directly reprogrammed from pNSCs were able to generate germline-competent himeras, and hierarchical clustering analysis showed that piPS cells were clustered more closer to parthenogenetic ES cells than normal female ES cells. Interestingly, piPS cells showed loss of parthenogenetic-specific imprinting patterns of donor cells. Microarray data also showed that the maternally imprinted genes, which were not expressed in pNSCs, were upregulated in piPS cells, indicating that pluripotential reprogramming lead to induce loss of imprinting as well as re-establishment of various features of pluripotent cells in parthenogenetic somatic cells. 5 samples were analyzed by microarray, each one them in duplicate. fNSC: Mouse female NSC (Neural Stem Cell) pNSC: Mouse parthenogenetic NSC (Neural Stem Cell) piPS-2F: Mouse parthenogenetic induced pluripotent cells derived from NSC overexpressing Oct4 and Klf4 pESC-B: Mouse parthenogenetic ESC (Embryonic Stem Cell) SSEA-1 sorted fESC: Mouse female ESC (Embryonic Stem Cell) OG2
Project description:Parthenogenetic embryonic stem cells (PESCs) may have future utility in cell replacement therapies. We examined genome-wide mRNA expression profiles of monkey PESCs relative to ESCs derived from fertilized embryos. Several known paternally-imprinted genes were in the highly down-regulated group in PESCs compared to ESCs. Allele specific expression analysis of paternally-imprinted genes, i.e., those genes whose expression is down-regulated in PESCs, led to the identification of one novel candidate that was exclusively expressed from a paternal allele. Our findings suggest that PESCs could be used as a model for studying genomic imprinting and in the discovery of novel imprinted genes. Keywords: gene expression The transcriptomes of rhesus monkey embryonic stem cell lines derived from IVF-produced embryos (Oregon Rhesus Macaque Embryonic Stem, ORMES-22) were compared with rhesus monkey parthenogenetic embryonic stem cell lines (heterozygous rhesus Parthenogenetic embryonic stem cell lines, rPESC-2) and homozygous rhesus Parthenogenetic embryonic stem cell lines, ORMES-9). Moreover, the transcriptomes of rPESC-2 line were also compared with ORMES-9. Finally, the adult somatic skin fibroblasts were analyzed. Three biological replicates of each cell line (A, B, C) were analyzed.
Project description:In this study, miRNA expression profiles were examined by Illumina microarray in mouse embryonic stem cells (ESCs) derived from androgenetic (aESC), parthenogenetic (pESC) and fertilized (fESC) blastocysts. Results showed that 125, 42 and 99 miRNAs were differentially expressed in the aESCs vs. fESCs, pESCs vs. fESCs and aESCs vs. pESCs, respectively. Androgenetic, parthenogenetically activated and fertilized embryonic stem cell lines were established from androgenetic and fertilized blasotocyst. microRNA microarrays were repeated three times using passages 6, 7 and 8.
Project description:In this study, miRNA expression profiles were examined by Illumina microarray in mouse embryonic stem cells (ESCs) derived from androgenetic (aESC), parthenogenetic (pESC) and fertilized (fESC) blastocysts. Results showed that 125, 42 and 99 miRNAs were differentially expressed in the aESCs vs. fESCs, pESCs vs. fESCs and aESCs vs. pESCs, respectively.