Project description:Transcriptional profiling of arsenic-induced toxicity and tolerance in Arabidopsis plants of different ecotypes Arsenic (As) is a toxic metalloid found ubiquitously in the environment and has widely been known as an acute poison and carcinogen. As toxicity is a major factor leading to root growth inhibition in plants. However, the molecular mechanisms of plants in response to As has not been extensively characterized. In this study, Arabidopsis ecotypes that are As-tolerant (Col-0) and -sensitive (Ws-2) were used to conduct a transcriptome analysis of the response to As (V). To begin elucidating the molecular basis of As toxicity and tolerance in Arabidopsis, seedlings of Col-0 and Ws-2 were subjected to As treatment. The root elongation rate of Col-0 was significantly higher than that of Ws-2 when exposed to As. The tolerant ecotype (Col-0) demonstrated lower accumulation of As when compared to the responses observed in the sensitive Ws-2. Subsequently, the effect of As exposure on genome-wide gene expression was examined in the two ecotypes. Comparative analysis of microarray data identified groups of genes with common and specific responses to As between Col-0 and Ws-2. The genes related to heat responses and oxidative stresses belonged to common responses, indicating conserved stress-associated changes across two ecotypes. The majority of specific responsive genes were those encoding heat shock proteins, heat shock factors, ubiquitin and transporters. The data suggested that metal transport and maintenance of protein structure may be important mechanisms for toxicity and tolerance to As. This study presents comprehensive surveys of global transcriptional regulation and identifies stress- and tolerance-associated genes in response to As. Comparison of Arabidopsis ecotype Col-0 and Ws-2 in response to As with the Affymetrix GeneChip were performed by the Affymetrix Gene Expression Service Lab (http://ipmb.sinica.edu.tw/affy/), supported by Academia Sinica, Taiwan
Project description:Transcriptional profiling of arsenic-induced toxicity and tolerance in Arabidopsis plants of different ecotypes Arsenic (As) is a toxic metalloid found ubiquitously in the environment and has widely been known as an acute poison and carcinogen. As toxicity is a major factor leading to root growth inhibition in plants. However, the molecular mechanisms of plants in response to As has not been extensively characterized. In this study, Arabidopsis ecotypes that are As-tolerant (Col-0) and -sensitive (Ws-2) were used to conduct a transcriptome analysis of the response to As (V). To begin elucidating the molecular basis of As toxicity and tolerance in Arabidopsis, seedlings of Col-0 and Ws-2 were subjected to As treatment. The root elongation rate of Col-0 was significantly higher than that of Ws-2 when exposed to As. The tolerant ecotype (Col-0) demonstrated lower accumulation of As when compared to the responses observed in the sensitive Ws-2. Subsequently, the effect of As exposure on genome-wide gene expression was examined in the two ecotypes. Comparative analysis of microarray data identified groups of genes with common and specific responses to As between Col-0 and Ws-2. The genes related to heat responses and oxidative stresses belonged to common responses, indicating conserved stress-associated changes across two ecotypes. The majority of specific responsive genes were those encoding heat shock proteins, heat shock factors, ubiquitin and transporters. The data suggested that metal transport and maintenance of protein structure may be important mechanisms for toxicity and tolerance to As. This study presents comprehensive surveys of global transcriptional regulation and identifies stress- and tolerance-associated genes in response to As.
Project description:Plants often face combinatorial stresses in their natural environment. Here arsenic (As) toxicity was combined with hypoxia (Hpx) in the roots of Arabidopsis thaliana as it often occurs in nature. The present work aimed to explore the effects of single and combined hypoxia and As stress applied at realistic stress levels to hydroponically grown A. thaliana. Arsenic as well as hypoxic growth conditions generate a characteristic signaling pattern, a significant part of which is mediated by ROS. The current study utilized the microarray to determine the overlapping signalling pattern and changes in gene expression for the defined stress combinaton compared to individual stresses.
Project description:ABSTRACT: Inorganic arsenic is a carcinogen and its ingestion in foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1 encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Further, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic containing food stuffs such as rice. Hybridizations from a set of Bulk Segregant analysis. We measured the elemental profile of 315 F2 plants from a cross between the high arsenic Arabidopsis thaliana accession Kr-0 and the the low arsenic accession Col-0, data available at www.ionomicshub.org <http://www.ionomicshub.org>. Leaves from the 59 highest and 61 lowest arsenic accumulating plants (calculated as a percentage of the Col-0 accumulation in the same growth tray) were pooled and the genomic DNA was extracted using Qiagen kits.