Project description:Stat1-null mice (129S6/SvEvTac-Stat1tm1Rds homozygous) uniquely develop estrogen-receptor-positive mammary tumors with incomplete penetrance and long latency. We studied the growth and development of the mammary glands in Stat1-null mice. Stat1-null MGs have faulty branching morphogenesis with abnormal terminal end buds. The Stat1-null MG also fails to sustain growth of 129S6/SvEv wild-type and null epithelium. These abnormalities are partially reversed by added progesterone and prolactin. Transplantation of wild-type bone-marrow into Stat1-null mice does not reverse the mammary gland developmental defects. Media conditioned by Stat1-null epithelium-cleared mammary fat pads does not stimulate epithelial proliferation whereas it is stimulated by conditioned media derived from either wild-type or progesterone and prolactin-treated Stat1-null epithelium-cleared mammary fat pads. Microarrays and multiplex cytokine protein assays showed that the mammary gland of Stat1-null mice had lower levels of growth factors that have been implicated in normal mammary gland growth and development. Transplanted Stat1-null tumors and their isolated cells also grow slower in Stat1-null mammary gland compared to wild-type recipient mammary gland. Stat1-null hosts responded to tumor transplants with granulocytic infiltrates while wild-type hosts show a mononuclear response. These studies demonstrate that growth of normal and neoplastic Stat1-null epithelium primarily depends on the hormonal milieu and factors, such as cytokines, from the mammary stroma. Stat1-null mammary glands were compared to 129SvEv WT mammary glands with respect to development, gene expression profiles, growth factors and histology.
Project description:Stat1-null mice (129S6/SvEvTac-Stat1tm1Rds homozygous) uniquely develop estrogen-receptor-positive mammary tumors with incomplete penetrance and long latency. We studied the growth and development of the mammary glands in Stat1-null mice. Stat1-null MGs have faulty branching morphogenesis with abnormal terminal end buds. The Stat1-null MG also fails to sustain growth of 129S6/SvEv wild-type and null epithelium. These abnormalities are partially reversed by added progesterone and prolactin. Transplantation of wild-type bone-marrow into Stat1-null mice does not reverse the mammary gland developmental defects. Media conditioned by Stat1-null epithelium-cleared mammary fat pads does not stimulate epithelial proliferation whereas it is stimulated by conditioned media derived from either wild-type or progesterone and prolactin-treated Stat1-null epithelium-cleared mammary fat pads. Microarrays and multiplex cytokine protein assays showed that the mammary gland of Stat1-null mice had lower levels of growth factors that have been implicated in normal mammary gland growth and development. Transplanted Stat1-null tumors and their isolated cells also grow slower in Stat1-null mammary gland compared to wild-type recipient mammary gland. Stat1-null hosts responded to tumor transplants with granulocytic infiltrates while wild-type hosts show a mononuclear response. These studies demonstrate that growth of normal and neoplastic Stat1-null epithelium primarily depends on the hormonal milieu and factors, such as cytokines, from the mammary stroma.
Project description:The present experiments were performed to determine the roles of estrogen receptors α and β (ERα and ERβ) in normal and neoplastic development in the mouse mammary gland. In wild-type mice, in vivo administration of estradiol (E) + progesterone (P) stimulated mammary ductal growth and alveolar differentiation. Mammary glands from mice in which the ERβ gene has been deleted (βERKO mice) demonstrated normal ductal growth and differentiation in response to E + P. By contrast, mammary glands from mice in which the ERα gene has been deleted (αERKO mice) demonstrated only rudimentary ductal structures that did not differentiate in response to E + P. EGF demonstrates estrogen-like activity in the mammary glands of αERKO mice: treatment of αERKO mice with EGF + P (without E) supported normal mammary gland development, induced expression of progesterone receptor (PR), and increased levels of G- protein-coupled receptor (GPR30) protein. Mammary gland development in βERKO mice treated with EGF + P was comparable to that of wild-type mice receiving EGF + P; EGF had no statistically significant effects on the induction of PR or expression of GPR30 in mammary glands harvested from either wild-type mice or βERKO mice. In vitro exposure of mammary glands to 7,12-dimethylbenz[a]anthracene (DMBA) induced preneoplastic mammary alveolar lesions (MAL) in glands from wild-type mice and βERKO mice, but failed to induce MAL in mammary glands from αERKO mice. Microarray analysis of DMBA-treated mammary glands identified 28 functional pathways whose expression was significantly different in αERKO mice versus both βERKO and wild-type mice; key functions that were differentially expressed in αERKO mice included cell division, cell proliferation, and apoptosis. The data demonstrate distinct roles for ERα and ERβ in normal and neoplastic development in the mouse mammary gland, and suggest that EGF can mimic the ERα-mediated effects of E in this organ.
Project description:Gene expression profiling of invasive breast cancer events from the tamoxifen prevention trial validates low estrogen receptor mRNA level as the main determinant of tamoxifen resistance in estrogen receptor positive breast cancer. In NSABP Breast Cancer Prevention Trial (BCPT), tamoxifen reduced the incidence of estrogen receptor (ER) positive tumors but not estrogen receptor negative breast cancer. More importantly, only 69% of estrogen receptor positive tumors were prevented by tamoxifen. The ER positive tumors arising in tamoxifen arm provides an ideal clinical model for acquired tamoxifen resistance. Based on data from NSABP trial B14 which showed linear prediction of the degree of benefit from adjuvant tamoxifen by the levels of ESR1 mRNA coding for ER-alpha, we hypothesized a priori that level of ESR1 mRNA would be lower in ER positive tumors arising in tamoxifen arm compared to those in placebo arm of BCPT. Keywords: Gene expression profiling analysis
Project description:The lymphatic system is a common avenue for the spread of breast cancer cells and dissemination through it occurs at least as frequently as hematogenous metastasis. Approximately 75% of primary breast cancers are estrogen receptor (ER) positive and the majority of these maintain receptor expression as lymph node (LN) metastases. However, it is unknown if ER function is equivalent in cancer cells growing in the breast and in the LNs. We have developed a model to assess estrogen responsiveness in ER(+) breast tumors and LN metastases. Fluorescent ER(+) MCF-7 tumors were grown in ovariectomized nude mice supplemented with estradiol. Once axillary LN metastasis arose, estradiol was withdrawn (EWD), for 1 or 4 weeks, or continued, to assess estradiol responsiveness. On EWD, proliferation rates fell similarly in tumors and LN metastases. However, estradiol-dependent ER down-regulation and progesterone receptor induction were deficient in LN metastases, indicating that ER-dependent transcriptional function was altered in the LN. Cancer cells from estradiol-treated and EWD primary tumors and matched LN metastases were isolated by laser capture microdissection. Global gene expression profiling identified transcripts that were regulated by the tissue microenvironment, by hormones, or by both. Interestingly, numerous genes that were estradiol regulated in tumors lost estradiol sensitivity or were regulated in the opposite direction by estradiol in LN metastases. We propose that the LN microenvironment alters estradiol signaling and may contribute to local antiestrogen resistance. Experiment Overall Design: 10 samples, including 3 each of estrogen and estrogen withdrawn axillary lymph nodes and 2 each of estrogen and estrogen withdrawn primary mammary gland tumors.
Project description:Aged STAT1-/- female mice spontaneously develop ERa+ PR+ mammary tumors that exhibit strikingly similar hormone-sensitivity and -dependency as human ERa+ luminal breast cancers. We used microarray data to compare the genetic relationships between the STAT1-/- mammary tumors and human breast cancers. We compared five STAT1-/- mammary tumor datasets with the publicaly available datasets of human breast cancers and those from other mouse mammary tumor models.
Project description:Epidemiological studies have shown that a full-term pregnancy at early age can decrease the breast cancer risk up to one-half. Pregnancy has been shown to prevent carcinogen-induced mammary tumors in rodents as well. The protective effect of pregnancy can be mimicked by administration of estrogen and progesterone to nulliparous rodents in amounts that are similar to those during pregnancy and alters responsiveness of p53 to DNA damage. Ovariectomized mice were treated with estrogen (E), progesterone (P), both estrogen and progesterone (E + P), or vehicle (V) alone and global expression profiles was analyzed to identify the mechanisms by which estrogen and progesterone combine to sensitize p53 function. Keywords: comparative hormone treatment
Project description:Breast cancer (BC) is the second most common type of cancer in women and one of the leading causes of cancer-related deaths worldwide. BC classification is based on the detection of three main histological markers: estrogen receptor alpha (ERα), progesterone receptor (PR) and the amplification of epidermal growth factor receptor 2 (HER2/neu). A specific BC subtype, named triple-negative BC (TNBC), lacks the aforementioned markers but a fraction of them express the estrogen receptor beta (ERβ). To investigate the functional role of ERβ in these tumors, interaction proteomics coupled to mass spectrometry (MS) was applied to deeply characterize the nuclear interactors partners in MDA-MD-468 and HCC1806 TNBC cells.
Project description:Epidemiological studies have shown that a full-term pregnancy at early age can decrease the breast cancer risk up to one-half. Pregnancy has been shown to prevent carcinogen-induced mammary tumors in rodents as well. The protective effect of pregnancy can be mimicked by administration of estrogen and progesterone to nulliparous rodents in amounts that are similar to those during pregnancy and alters responsiveness of p53 to DNA damage. Ovariectomized mice were treated with estrogen (E), progesterone (P), both estrogen and progesterone (E + P), or vehicle (V) alone and global expression profiles was analyzed to identify the mechanisms by which estrogen and progesterone combine to sensitize p53 function. Experiment Overall Design: Twenty ovariectomized animals were used for examine transcriptional effects of hormones by microarray. The hormones were administered by daily i.p. injection for 4 days.Treatment groups included: 4 animals receiving 2ug 17-beta-estrogen (E), 4 animals receiving 1mg progesterone (P), 5 animals receiving both estrogen and progesterone (E+P) and 4 animals receiving 100ul sesame oil (V). Epithelial-free fat pads from 3 animals receiving E+P were also analyzed to distinguish responses to E+P in the stroma (E+P CFP). Lymph nodes were removed from mammary glands at the time of collection.