Project description:This SuperSeries is composed of the following subset Series: GSE31864: Epigenome profiling of repressive histone modifications, DNA methylation and gene expression in normal and malignant urothelial cells GSE31865: Global methylation in normal and malignant urothelial cells Refer to individual Series
Project description:Integrated epigenome profiling of repressive histone modifications, DNA methylation and gene expression in normal and malignant urothelial cells [ChIP-Seq data]
Project description:Epigenome profiling of repressive histone modifications, DNA methylation and gene expression in normal and malignant urothelial cells
Project description:To gain a more depth knowledge of repressive epigenetic gene regulation in UCC, we have profiled H3K9m3 and H3K27m3 in normal and malignant urothelial cells. We matched these profiles to those 5-methylcytosine and gene expression. We hypothesized that differences represent pro-carcinogenic events within the urothelium. We identified a panel of genes with cancer specific epigenetic mediated aberrant expression. Two repressive histone modifications (H3K9m3 and H3K27m3) , cytosine methylation and gene expression were compared between normal human urothelial cell line (NHU) and malignant urothelial cells (EJ and RT112).
Project description:Genome wide DNA methylation profiling of normal and upper-tract urothelial carcinomas tissues. The Illumina Infinium EPIC arrays was used to obtain DNA methylation profiles across approximately 866,091 probes. Samples included 35 upper-tract urothelial carcinomas samples and 8 adjacent normal tissues
Project description:We have created 5-methylcytosine profiles for normal and malignant urothelial cells. Competitive hybridization of background and 5-methylcytosine enriched immunoprecipiated DNA fractions
Project description:Aberrant DNA methylation is frequently observed in cancer. The aim of this study was to determine how DNA methylation is changed after toxicant-induced malignant transformation. This study also puts the DNA methylation changes into context with respect to the aberrant DNA methylation events that occur in bladder and prostate carcinogenesis not associated with toxicant exposure. Immortalized UROtsa (n=3) and RWPE-1 (n=2) are compared to normal HUC (n=2) and PrEC (n=2), respectively. Arsenite (n=1), monomethylarsonous acid (n=2) or cadmium (n=1) transformed UROtsa are compared to parental UROtsa (n=3). Arsenite (n=2), cadmium (n=1) or MNU (n=1) transformed RWPE-1 cells are compared to parental RWPE-1 cells (n=2). Clinical bladder tumor biopsies (n=6), urothelial carcinoma cell lines (n=2) and prostate cancer cell lines (n=3) are compared to thier normal tissue counterparts HUC (n=2) and PrEC (n=2). Immunoprecipitation using anti-methylcytosine (5MeC) antibody.
Project description:Aberrant DNA methylation is frequently observed in cancer. The aim of this study was to determine how DNA methylation is changed after toxicant-induced malignant transformation. This study also puts the DNA methylation changes into context with respect to the aberrant DNA methylation events that occur in bladder and prostate carcinogenesis not associated with toxicant exposure. Immortalized UROtsa (n=3) and RWPE-1 (n=2) are compared to normal HUC (n=2) and PrEC (n=2), respectively. Arsenite (n=1), monomethylarsonous acid (n=2) or cadmium (n=1) transformed UROtsa are compared to parental UROtsa (n=3). Arsenite (n=2), cadmium (n=1) or MNU (n=1) transformed RWPE-1 cells are compared to parental RWPE-1 cells (n=2). Clinical bladder tumor biopsies (n=6), urothelial carcinoma cell lines (n=2) and prostate cancer cell lines (n=3) are compared to thier normal tissue counterparts HUC (n=2) and PrEC (n=2). Immunoprecipitation using anti-methylcytosine (5MeC) antibody.