Project description:The goal of these experiments was to define the targets of Ty3 transposition in Saccharomyces cerevisiae. Ty3 is a retroviruslike element that is found at the transcription initiation site of chromosomal tRNA genes.
Project description:The goal of these experiments was to define the targets of Ty3 transposition in Saccharomyces cerevisiae. Ty3 is a retroviruslike element that is found at the transcription initiation site of chromosomal tRNA genes. A Ty3 that can be induced by growth in galactose-containing medium and which was marked by an insertion of HIS3 downstream of the second open reading frame of the element (POL3) was induced to undergo transposition by plating cells onto galactose containing medium and replica-plating onto medium selective for cells that had undergone transposition. These cells were collected, DNA was extracted, and inverse PCR was performed using primers inside the Ty3 element in order to generate a library of insertion sites flanked by Illumina sequence-compatible primers.
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:A six array study using total gDNA recovered from two separate cultures of each of three different strains of Saccharomyces cerevisiae (YB-210 or CRB, Y389 or MUSH, and Y2209 or LEP) and two separate cultures of Saccharomyces cerevisiae DBY8268. Each array measures the hybridization of probes tiled across the Saccharomyces cerevisiae genome.
Project description:Industrial bioethanol production may involve a low pH environment,improving the tolerance of S. cerevisiae to a low pH environment caused by inorganic acids may be of industrial importance to control bacterial contamination, increase ethanol yield and reduce production cost. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different ploidy under low pH stress, we hope to find the tolerance mechanism of Saccharomyces cerevisiae to low pH.
Project description:We report change in the nucleosome occupancy and accessibility upon deletion of ATP-dependent chromatin remodellers (ISW1, ISW2 & CHD1) in Saccharomyces cerevisiae.