Project description:In the breast, the reduction of invasive ductal carcinoma (IDC) seems to be smaller than expected from an increasing number of ductal carcinoma in situ (DCIS) detection in screening programs, suggesting that some DCIS lesions remain dormant and take a very long time for progression to IDC. However, the progression risk of individual DCIS and papilloma to IDC largely remain unassessable. To tackle this problem, we applied array-based comparative genomic hybridization to DCIS, IDC and papilloma lesions. We confirmed the presence of chromosomal copy-number alterations (CNAs) reported previously in breast cancers and the absence of chromosomal CNAs in the papillomas examined. These findings suggest that gene CNA profile is a good lineage marker for prediction of progression risk of individual tumors and that tumor progression within each lineage is driven by epigenetic rather than genetic alterations.
Project description:Ductal carcinoma in situ (DCIS) is a non-obligate precursor to invasive ductal carcinoma (IDC). Annotation of the genetic differences between the two lesions may assist in the identification of genes that promote the invasive phenotype. Matched IDC and DCIS showed highly similar copy number profiles (average of 83% of the genome shared) indicating a common clonal orgin although there is evidence that the DCIS continues to evolve in parallel with the co-existing IDC. Four chromosomal regions of loss (3q, 6q, 8p and 11q) and four regions of gain (5q, 16p, 19q and 20) were recurrently affected in IDC but not in DCIS. CCND1 and MYC showed increased amplitude of gain in IDC. One region of loss (17p11.2) was specific to DCIS.
Project description:Ductal carcinoma in situ (DCIS) is a non-obligate precursor to invasive ductal carcinoma (IDC). Annotation of the genetic differences between the two lesions may assist in the identification of genes that promote the invasive phenotype. Matched IDC and DCIS showed highly similar copy number profiles (average of 83% of the genome shared) indicating a common clonal orgin although there is evidence that the DCIS continues to evolve in parallel with the co-existing IDC. Four chromosomal regions of loss (3q, 6q, 8p and 11q) and four regions of gain (5q, 16p, 19q and 20) were recurrently affected in IDC but not in DCIS. CCND1 and MYC showed increased amplitude of gain in IDC. One region of loss (17p11.2) was specific to DCIS. 21 cases of synchronous DCIS and IDC were microdissected from FFPE tissue and analysed by molecular inversion probe (MIP) copy number arrays. The arrays were early release OncoScan arrays and the data in this submission are CN values for the ~300,000 probes common to two batches performed. Raw data is retained by Affymetrix.
Project description:Ductal carcinoma in situ (DCIS) is a heterogeneous, pre-invasive lesion associated with an increased risk for future invasive ductal carcinoma. However, accurate risk stratification for development of invasive disease and appropriate treatment decisions remain clinical challenges. DNA methylation alterations are recognized to be early events in the progression of cancer and represent emerging molecular markers that may predict invasive recurrence more accurately than traditional measures of DCIS prognosis. We measured DNA methylation of DCIS (n=40) and adjacent normal (n=15) tissues using the Illumina HumanMethylation450 array. We identified locus-specific methylation differences between DCIS and matched adjacent-normal tissue (95,609 CpGs, Q < 0.05). Among 40 DCIS cases 13 later developed invasive disease and we identified 641 CpG sites that exhibited differential DNA methylation (P < 0.01 and medianúΔβú > 0.1) in these cases compared with age-matched subjects without invasive disease over a similar follow up period. The set of differentially methylated CpG loci associated with disease progression was enriched in homeobox-containing genes (P = 1.3E-9) and genes involved with limb morphogenesis (P = 1.0E-05). In an independent cohort, a subset of genes with progression-related differential methylation between DCIS and invasive breast cancer were confirmed. Further, the functional relevance of these genes’ regulation by methylation was demonstrated in early stage breast cancers from The Cancer Genome Atlas database. This work contributes to the understanding of epigenetic alterations that occur in DCIS and illustrates the potential of DNA methylation as markers of DCIS progression.
Project description:Purpose: To gain insight into genomic and trancriptomic subtypes of ductal carcinomas in situ of the breast (DCIS). Results: Thirty-two DCIS exhibited a luminal phenotype; 21were ERBB2 positive, and 4 were ERBB2/estrogen receptor (ER) negativewith1harboring a bona fide basal-like phenotype.Based on a CGHanalysis, genomic types were identified in this series of DCISwith the 1q gain/16q loss combination observed in 3 luminal DCIS, themixed amplifier pattern including all ERBB2,12 luminal and 1ERBB2/ER- DCIS, and the complex copy number alteration profile encompassing 14 luminal and 1ERBB2/ER- DCIS. Eight cases (8 of 57; 14%) presented aTP53 mutation, all being amplifiers. Unsupervised analysis of gene expression profiles of 26 of the 57 DCIS showed that luminal and ERBB2-amplified, ER-negative cases clustered separately.We further investigated the effect of high and low copy number changes on gene expression. Strikingly, amplicons but also low copy number changes especially on 1q, 8q, and 16q in DCIS regulated the expression of a subset of genes in a very similar way to that recently described in invasive ductal carcinomas. Conclusions: These combined approaches show that the molecular heterogeneity of breast ductal carcinomas exists already in in situ lesions and further indicate that DCIS and invasive ductal carcinomas share genomic alterations with a similar effect on gene expression profile.
Project description:Pathologic and epidemiologic evidence has led to a histologic model of breast cancer progression that involves advancement through specific morphologic stages including atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive mammary carcinoma (IMC), although not necessarily always in a linear fashion. Numerous observational studies have examined genetic, epigenetic and gene expression differences in breast tissues representing these different stages of progression, but model systems which would allow for experimental testing of specific factors influencing transition through these stages are scarce. The 21T series cell lines, all originally derived from the same patient with metastatic breast cancer, have been proposed to represent a mammary tumor progression series. We report here that three of the 21T cell lines indeed mimic specific stages of human breast cancer progression (21PT-derived cells, ADH; 21NT-derived cells, DCIS; 21MT-1 cells, IMC) when grown in the mammary fat pad of nude mice, albeit after up to a year post-injection. In order to develop a more rapid, readily manipulatable in vitro assay for examining the biologic differences between these cell lines, we have made use of a 3D Matrigel system. When grown in 3D Matrigel, we have found characteristic morphologies of the three cell lines in which quantifiable aspects of the stage-specific in vivo behaviors (i.e. differences in acinar structure formation, cell polarization, cell cohesiveness, cell proliferation, cell invasion) are re-capitulated in a reproducible fashion. Gene expression profiling has revealed a characteristic pattern for each of the three cell lines. Interestingly, WNT pathway alterations are particularly predominant in the early transition from 21PTci (ADH) to 21NTci (DCIS), whereas alterations in expression of genes associated with control of cell motility and invasiveness phenomena are more prominent in the later transition of 21NTci (DCIS) to 21MT-1 (IMC). This system thus reveals potential therapeutic targets and will provide a means of testing the influences of identified genes on transitions between these stages of pre-malignant to malignant growth. Keywords: DCIS or IDC vs ADH RNA derived from three biological replicates of a cell line representing atypical ductal hyperplasia (ADH), Ductal carcinoma in situ (DCIS), and Invasive ductal carcinoma (IDC)
Project description:As the most common form of pre-invasive breast cancer, ductal carcinoma in situ (DCIS) affects over 50,000 women in the US annually. Despite standardized treatment involving lumpectomy and radiation therapy, up to 25 % of patients with DCIS experience disease recurrence often with invasive ductal carcinoma (IDC), indicating that a subset of patients may be under-treated. As most DCIS cases will not progress to invasion, many patients may experience over-treatment. By understanding the underlying processes associated with DCIS to IDC progression, we can identify new biomarkers to determine which DCIS cases may become invasive and improve treatment for patients. Accumulation of fibroblasts in IDC is associated with disease progression and reduced survival. While fibroblasts have been detected in DCIS, little is understood about their role in DCIS progression.We sought to determine whether DCIS fibroblasts were similar or distinct from normal and IDC fibroblasts at the transcriptome level, fibroblasts underwent transcriptome profilingthrough bulk RNA seq and pathway analysis. DCIS fibroblasts are phenotypically distinct from normal breast and IDC fibroblasts, and play an important role in breast cancer growth, invasion, and recruitment of myeloid cells. These studies provide novel insight into the role of DCIS fibroblasts in breast cancer progression and identify some key biomarkers associated with DCIS progression to IDC, with important clinical implications.
Project description:<p>This study comprises prospectively accrued, microdissected fresh frozen samples of multifocal lobular carcinoma <i>in situ</i> (LCIS), ductal carcinoma <i>in situ</i> (DCIS), invasive lobular carcinoma and invasive ductal carcinoma from patients undergoing prophylactic or therapeutic mastectomies after a diagnosis on LCIS diagnosed and managed at Memorial Sloan Kettering Cancer Center (MSKCC). Microdissected samples were subjected to paired-end whole exome sequencing on an Illumina HiSeq 2000. The data generated were used to define the landscape of somatic genetic alterations of LCIS, DCIS, invasive lobular carcinoma and invasive ductal carcinoma, to define clonal relatedness of these lesions and to investigate the clonal shifts in the progression from <i>in situ</i> to invasive breast cancer.</p>
Project description:This study identifies progression in breast ductal carcinoma in situ (DCIS) as it progresses towards triple negative invasive breast cancer (TNBC).
Project description:This study identifies progression in breast ductal carcinoma in situ (DCIS) as it progresses towards triple negative invasive breast cancer (TNBC).