Project description:Scientific knowledge on the subjects: Injurious mechanical ventilation amplifies acute lung injury in a heterogeneous and regional fashion but the molecular mechanisms underlying regional lung injury and the protective effects of prone positioning are unclear. Regionally injurious ventilation is associated with discrete differential lung transcriptomic changes. Ventilating in the prone, compared with the supine position abrogates regional injury by depressing MKP-1.
Project description:In the present study we seek to identify changes in lung gene expression under mechanical ventilation in uninjured as well as acutely and chronically injured lungs. A standard volume-controlled lung-protective ventilatory protocol is compared to a concept of mechanical ventilation using variable tidal volumes.
Project description:Scientific knowledge on the subjects: Injurious mechanical ventilation amplifies acute lung injury in a heterogeneous and regional fashion but the molecular mechanisms underlying regional lung injury and the protective effects of prone positioning are unclear. Regionally injurious ventilation is associated with discrete differential lung transcriptomic changes. Ventilating in the prone, compared with the supine position abrogates regional injury by depressing MKP-1. Adult rats were ventilated with high (18 mL/Kg, PEEP 0) tidal volume (Vt) in supine or prone position. Non ventilated rats were used as controls. Dorsal-caudal lung mRNA was analyzed by microarray.
Project description:Rat model of ARDS was induced by saline lavage and mechanical ventilation. miRNA from rat lungs were used for dual color DNA microarray hybridization with 3DNA 50 kit version 2.
Project description:Rat model of ARDS was induced by saline lavage and mechanical ventilation. Total RNA from rat lungs were used for dual color DNA microarray hybridization with 3DNA 50 kit version 2.
Project description:Children have a lower incidence and mortality from acute lung injury than adults, and infections are the most common event associated with acute lung injury (ALI). To study the effects of age on susceptibility to ALI, we investigated the responses to microbial products combined with mechanical ventilation in juvenile (21 day) and adult (16 week-old) mice. We hypothesized that the increased incidence and severity of lung injury associated with increasing age is due in large part to acquired changes in the way in which inflammatory responses are activated in the lungs in response to microbial products and mechanical ventilation. Juvenile (21 day) and adult (16 week) C57BL/6 mice were treated with an aerosol of E. coli 0111:B4 lipopolysaccharide (LPS) (20 mL of 0.1 mg/mL) for 30 minutes in a sealed aerosol chamber, immediately followed by mechanical ventilation (LPS+MV) using tidal volume = 15 mL/kg, rate = 80 breaths/min, FiO2 = 30% and positive end expiratory pressure = 2 cm H2O for the duration of the study period time = 2 hours. Comparison groups included mice treated with LPS or mechanical ventilation (MV) alone, and untreated age-matched controls. There were N = 4 animals per group except the juvenile mice treated with MV alone and LPS+MV where there were N = 3. Each sample was an individual animal, therefore there were 30 samples. Mice treated with LPS alone were placed into a sealed aerosol chamber as stated above, and then allowed to breath spontaneously with free access to food and water for the duration of the study period time = 2 hours. Mice treated with MV alone were treated with the mechanical ventilation protocol stated above for the duration of the study period time = 2 hours. At the end of the study period, the mice were euthanized, and the lungs were immediately removed and placed into RNAlater (Ambion, Austin, TX) for at least 24 hr prior to isolation of total lung mRNA.
Project description:Rat model of ARDS was induced by saline lavage and mechanical ventilation. miRNA from rat lungs were used for dual color DNA microarray hybridization with 3DNA 50 kit version 2. Two-condition experiment, CON vs. ARDS lung tissues. replicates: 6 control, 6 ARDS. One replicate per array.
Project description:To study the effects of previous exposure to mechanical ventilation may modify the development of Ventilator-induced lung injury, preconditioning was induced by low-pressure ventilation for 90 minutes. After 1 week, intact (sham) and preconditioned mice were sacrificed, the lungs extracted and gene expression measured in order to identify differences responsible for the observed tolerance to ventilator-induced lung injury observed in preconditioned animals. 6 samples were analyzed, from 3 intact (sham) and 3 preconditioned CD1 mice.