Project description:This SuperSeries is composed of the following subset Series: GSE35738: 2009 pandemic H1N1 virus causes disease and upregulation of genes related to inflammatory and immune response, cell death, and lipid metabolism in pigs GSE40088: Comparative transcriptomic analysis of acute host responses during 2009 pandemic H1N1 influenza infection in mouse, macaque, and swine (macaque dataset) GSE40091: Comparative transcriptomic analysis of acute host responses during 2009 pandemic H1N1 influenza infection in mouse, macaque, and swine (mouse dataset) Refer to individual Series
Project description:In June 2009, the World Health Organization declared the first influenza pandemic of the 21st century, due to the emergence and rapid spread of new swine origin H1N1 influenza A virus. In contrast to seasonal influenza infections, which typically cause morbidity and mortality in the elderly, this virus caused severe infection in young adults and not the elderly. This phenomenon was attributed to the presence of cross-neutralizing antibodies acquired by older individuals from previous exposure to swine origin influenza. However, this hypothesis could not be empirically tested using clinical data. To address this question, we investigated viral replication and the development of the immune response in naï12 years old) and aged (20 to 24 years old) female rhesus macaques infected with A/California/04/2009 (H1N1), one of the circulating pandemic strains in 2009. We compared viral loads as well as the kinetics and magnitude of the adaptive immune response in peripheral blood and bronchoalveolar lavage samples (BAL) collected longitudinally for 99 days post-infection. Although, adult animals exhibited earlier T cell responses in peripheral blood, aged animals generated a robust T cell response with comparable kinetics and magnitude as those observed in young animals in BAL. Moreover, aged animals generated a higher hemagglutination inhibition titer compared to young animals. We also measured the concentration of several cytokines in BAL supernatant. With the exception of IL-8, which was higher in aged animals, we found no differences in IFNa, IFNb, TNFa, IL-1r, IL-6, IL-15, IL-17, or MCP1 levels. Finally, we compared gene expression infection using microarray analysis of BAL samples taken on days 0, 4, 7, 10, and 14 pi. Our analyses revealed that the largest difference in host response between aged and young animals was detected day 4 post-infection, with significant enrichment for genes associated with inflammation, the innate immune response, and T cell activation in aged animals. The ability of aged animals to generate a robust immune response, especially antibody response, following infection with 2009 H1N1 virus could explain the lack of morbidity normally observed with seasonal influenza viruses in this vulnerable population. 16 female rhesus macaques (Macaca Mulatta) 10-12 (Adult) and 20-24 years (Old/Aged) of age were used in these studies. Animals were infected with A/California/04/ 2009 H1N1 using a combinatory of intra-tracheal (4ml), intranasal (0.5 ml/nostril), and conjunctival (0.5 ml/eyelid) routes for a total dose of 7x106 TCID50 dose. Microarray analysis was performed on Bronchoalveolar lavage (BAL) samples collected on days 0, 4, 7, 10 and 14. Note: One of the Day 0 array did not pass QC metrics so for this animal the average of the other Day 0 samples from that group was utilized. At the end of the study animals were released back to the colony.
Project description:Background: The 2009 pandemic H1N1 influenza virus emerged in swine and quickly became a major global health threat. In mouse, non-human primate, and swine infection models, the pH1N1 virus efficiently replicates in the lung and induces pro-inflammatory host responses; however, whether similar or different cellular pathways were impacted by pH1N1 virus across independent infection models remains to be further defined. To address this, we have performed a comparative transcriptomic analysis of acute host responses to a single pH1N1 influenza virus, A/California/04/2009 (CA04), in the lung of mice, macaques and swine. Results: Despite similarities in the clinical course, we observed differences in inflammatory molecules elicited, and the kinetics of their gene expression changes across all three species. The retinoid X receptor (RXR) signaling pathway controlling pro-inflammatory and metabolic processes was differentially regulated during infection in each species, though the heterodimeric RXR partner, pathway associated signaling molecules, and gene expression patterns differed in each species. Conclusions: By comparing transcriptional changes in the context of clinical and virological measures, we identified differences in the host transcriptional response to pH1N1 virus across independent models of acute infection. Antiviral resistance and the emergence of new influenza viruses have placed more focus on developing drugs that target the immune system. Underlying overt clinical disease are molecular events that suggest therapeutic targets identified in one host may not be appropriate in another. The goal of this experiment was to use global gene expression profiling to understand swine lung host responses to pandemic H1N1 influenza A/Californica/04/2009 (CA04) virus infection and compare acute host responses across independent species. Four-week-old crossbred pigs (Sus Scrofa) were inoculated intratracheally with either 10^6 TCID50/pig egg-derived 2009 pandemic influenza A/California/04/2009 virus (n = 5) or mock inoculated with non-infectious cell culture supernatant (control; n = 4). Animals were euthanized on day 7 post-infection and lung samples were used for microarray.
Project description:Background: The 2009 pandemic H1N1 influenza virus emerged in swine and quickly became a major global health threat. In mouse, non-human primate, and swine infection models, the pH1N1 virus efficiently replicates in the lung and induces pro-inflammatory host responses; however, whether similar or different cellular pathways were impacted by pH1N1 virus across independent infection models remains to be further defined. To address this, we have performed a comparative transcriptomic analysis of acute host responses to a single pH1N1 influenza virus, A/California/04/2009 (CA04), in the lung of mice, macaques and swine. Results: Despite similarities in the clinical course, we observed differences in inflammatory molecules elicited, and the kinetics of their gene expression changes across all three species. The retinoid X receptor (RXR) signaling pathway controlling pro-inflammatory and metabolic processes was differentially regulated during infection in each species, though the heterodimeric RXR partner, pathway associated signaling molecules, and gene expression patterns differed in each species. Conclusions: By comparing transcriptional changes in the context of clinical and virological measures, we identified differences in the host transcriptional response to pH1N1 virus across independent models of acute infection. Antiviral resistance and the emergence of new influenza viruses have placed more focus on developing drugs that target the immune system. Underlying overt clinical disease are molecular events that suggest therapeutic targets identified in one host may not be appropriate in another. The goal of this experiment was to use global gene expression profiling to understand mouse lung cellular responses to pandemic H1N1 influenza A/Californica/04/2009 virus infection. Six-to-eight-week-old female BALB/c mice were anesthetized and inoculated with either 50 μl of phosphate-buffered saline (PBS; Mock) or with 10^6 pfu of pandemic H1N1 influenza A/California/04/2009 virus in a 50 μl volume, and whole lungs were collected at days 1, 3 and 5 post-inoculation. Lung samples from 9 animals for the infection group were used for array analysis, three animals per time point. Lung samples from 8 animals for the mock group were used for array analysis, three animals for the day 1 and 3 time points and 2 animals for the day 5 time point.
Project description:Background: The 2009 pandemic H1N1 influenza virus emerged in swine and quickly became a major global health threat. In mouse, non-human primate, and swine infection models, the pH1N1 virus efficiently replicates in the lung and induces pro-inflammatory host responses; however, whether similar or different cellular pathways were impacted by pH1N1 virus across independent infection models remains to be further defined. To address this, we have performed a comparative transcriptomic analysis of acute host responses to a single pH1N1 influenza virus, A/California/04/2009 (CA04), in the lung of mice, macaques and swine. Results: Despite similarities in the clinical course, we observed differences in inflammatory molecules elicited, and the kinetics of their gene expression changes across all three species. The retinoid X receptor (RXR) signaling pathway controlling pro-inflammatory and metabolic processes was differentially regulated during infection in each species, though the heterodimeric RXR partner, pathway associated signaling molecules, and gene expression patterns differed in each species. Conclusions: By comparing transcriptional changes in the context of clinical and virological measures, we identified differences in the host transcriptional response to pH1N1 virus across independent models of acute infection. Antiviral resistance and the emergence of new influenza viruses have placed more focus on developing drugs that target the immune system. Underlying overt clinical disease are molecular events that suggest therapeutic targets identified in one host may not be appropriate in another. The goal of this experiment was to use global gene expression profiling to understand non-human primate lung cellular responses to pandemic H1N1 influenza A/California/04/2009 virus infection. Four-to-fifteen-year-old cynomologous macaques were infected with CA04 virus (n = 4) under anesthesia through a combination of intratracheal (4 ml), intranasal (0.5 ml per nostril), conjunctival (0.5 ml per eyelid) and oral (1 ml) routes with a suspension containing 10^6 TCID50/ml (total infectious dose was 7x10^6 TCID50). Animals were euthanized on 1 and 6 days post-inoculation (n = 2 per time point), and total RNA was extracted from lung samples and analyzed by microarray. Pooled RNA from lungs of uninfected animals served as the reference.