Project description:Furfural, phenol and acetic acid, generated during cellulosic material pretreatment, are the representative inhibitors to yeast used for ethanol production. The responses to these inhibitors in industrial yeast and the corresponding adapted strains were analyzed. Experiment Overall Design: We analyzed the transient response to inhibitors and the different transcriptions in industrial yeast and furfural-, phenol-, and acetic acid-adapted strains. Industrial yeast and the adapted strains were collected at 20 minutes after inhibitor addition. The reference samples for industrial yeast and adapted strains were collected at the same time without inhibitor addition. 2 replicates for each strain/treatment were analyzed.
Project description:Furfural, phenol and acetic acid, generated during the cellulosic material pretreatment, are the representative inhbitors to yeast used for ethanol production. The responses to multi-inhbitors in industrial yeast and the tolerant strain were analyzed. We analyzed the transcriptome of the parental and tolerant strains in the presence of multi-inhibitors. Parental and tolerant strains were collected at the exponential stage in the presence of multi-inhibitors. The reference samples for industrial yeast and adapted strains were collected at the same growth stage in the absence of inhibitors.
Project description:Furfural, phenol and acetic acid, generated during cellulosic material pretreatment, are the representative inhibitors to yeast used for ethanol production. The responses to these inhibitors in industrial yeast and the corresponding adapted strains were analyzed.
Project description:Furfural, phenol and acetic acid, generated during the cellulosic material pretreatment, are the representative inhbitors to yeast used for ethanol production. The responses to multi-inhbitors in industrial yeast and the tolerant strain were analyzed. We analyzed the transcriptome of the parental and tolerant strains in the presence of multi-inhibitors.
Project description:In the search for renewable sources of energy, bioethanol stands out as a benchmark biofuel because its production is based on a proven technological platform. Bioethanol is produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (~2 SNPs per kilobase), and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, and appear to reflect ectopic homologous recombination between repetitive DNA sequences. Despite the complex karyotype of JAY270, this diploid, when sporulated, had a high frequency of viable spores (~93%). Crosses of haploids derived from JAY270 to a haploid of the unrelated laboratory strain S288c also resulted in diploids that had good spore viability (75-95%). Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis and spore viability, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures that may be associated with a fitness benefit. We also explore features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high cell mass production and fermentation kinetics, high temperature growth and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.
Project description:Reprogramming a non-methylotrophic industrial host, such as Saccharomyces cerevisiae, to a synthetic methylotroph reprents a huge challenge due to the complex regulation in yeast. Through TMC strategy together with ALE strategy, we completed a strict synthetic methylotrophic yeast that could use methanol as the sole carbon source. However, how cells respond to methanol and remodel cellular metabolic network on methanol were not clear. Therefore, genome-scale transcriptional analysis was performed to unravel the cellular reprograming mechanisms underlying the improved growth phenotype.