Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes.
Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes. For each sample analyzed in this study three biological replicates were performed. Three different samples were taken from a strain expressing the WalR-SPA protein as well as from wild-type (168) without a tagged WalR. Samples were taken from exponentially growing cells in low phosphate medium (LPDM) as well as from phosphate-limited cells (T2). Each sample compares ChIP DNA vs. Total DNA from the same cells.
Project description:Reversible protein phosphorylation is an important and ubiquitous protein modification in all living cells. We report that protein arginine phosphorylation plays a physiological significant role for the regulation of protein activity. We detected 121 arginine phospho-sites for 87 proteins in the Gram-positive model organism Bacillus subtilis in vivo. Moreover, we provide evidences that arginine phosphorylations are involved in the fine-tuned signal transduction of many critical cellular processes, such as protein degradation, motility, competence, stringent and stress response. Our results suggest that in B. subtilis the activity of a protein arginine phosphatase allows a fast regulation of protein activity by protein arginine kinases and that protein arginine phosphorylations play an important role as a reversible post-translational modification in bacteria.
Project description:Reversible protein phosphorylation is an important and ubiquitous protein modification in all living cells. We report that protein arginine phosphorylation plays a physiological significant role for the regulation of protein activity. We detected 121 arginine phospho-sites for 87 proteins in the Gram-positive model organism Bacillus subtilis in vivo. Moreover, we provide evidences that arginine phosphorylations are involved in the fine-tuned signal transduction of many critical cellular processes, such as protein degradation, motility, competence, stringent and stress response. Our results suggest that in B. subtilis the activity of a protein arginine phosphatase allows a fast regulation of protein activity by protein arginine kinases and that protein arginine phosphorylations play an important role as a reversible post-translational modification in bacteria. Cells were grown under vigorous agitation at 37 M-BM-0C in a defined medium (StM-CM-<lke et al., 1993, J Gen Microbiol 139, 2041-2045). Samples were taken at OD500 0.4 and 1h upon entry into stationary phase. Microarray hybridizations were performed with RNA from three biological replicates. The individual samples were labeled with Cy5; a reference pool containing equal amounts of RNA from all 10 samples was labeled with Cy3.
Project description:To explore the effects of different stress conditions on Bacillus subtilis str.168, a selection of conditions were applied to the organism and RNA-seq data gathered. A matrix of gene counts was produced as a basis for further analysis into the transcription profiles of Bacillus subtilis str.168.