Project description:In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some group of viruses. However, nothing is known for members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, the population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae, is characterized.Deep sequencing of small RNAs (sRNAs) from CLRDV-infected cotton leaves was performed. Results showed 21-nt to 24-nt long vsRNAs matching all the viral genome, with a higher frequency of matches in the 3M-CM-"M-BM-^@M-BM-^Y region. Equivalent amounts of sense and antisense vsRNAs were found, and the 22-nt long small RNA class was the most prominent one. Looking for cotton Dcl transcripts levels during infection, we could observe that Dcl4 seems to be up-regulated, while Dcl2 seems to be down-regulated.This is the first report on the profile of sRNAs coming from a plant infected with a member of the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAsOur results indicate that secondary structures of the viral RNAs are not the main source of the viRNAs observed, as suggested for other viruses. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpected high accumulation of 22-nt viRNAvsRNAs are discussed. CLRDV is the causal agent of worldwide cotton pathology named Cotton blue disease. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases. Total RNA obtained from leaves of the cotton plant 5 days post-infection with Cotton leafrol dawrf virus (CLRDV) compared to not-infected control.
Project description:In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some group of viruses. However, nothing is known for members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, the population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae, is characterized.Deep sequencing of small RNAs (sRNAs) from CLRDV-infected cotton leaves was performed. Results showed 21-nt to 24-nt long vsRNAs matching all the viral genome, with a higher frequency of matches in the 3â region. Equivalent amounts of sense and antisense vsRNAs were found, and the 22-nt long small RNA class was the most prominent one. Looking for cotton Dcl transcripts levels during infection, we could observe that Dcl4 seems to be up-regulated, while Dcl2 seems to be down-regulated.This is the first report on the profile of sRNAs coming from a plant infected with a member of the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAsOur results indicate that secondary structures of the viral RNAs are not the main source of the viRNAs observed, as suggested for other viruses. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpected high accumulation of 22-nt viRNAvsRNAs are discussed. CLRDV is the causal agent of worldwide cotton pathology named Cotton blue disease. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.
Project description:Background: Dwarf cottons are more resistant to damage from wind and rain and associated with stable, increased yields, and also desirable source for breeding the machine harvest varieties. In an effort to uncover the transcripts and miRNA networks involved in plant height, the transcriptome and small RNA sequencing were performed based on dwarf mutant Ari1327 (A1), tall-culm mutant Ari3697 (A3) and wild type Ari971 (A9) in Gossypium hirsutum. Results: The transcriptome sequencing analysis showed that the enriched pathways of top 3 differentially expressed genes (DEGs) were categorized as carotenoid biosynthesis, plant-pathogen interaction and plant hormone signal transduction in both A1-A9 and A3-A9. The ABA and IAA related factors were differentially expressed in the mutants. Importantly, we found the lower expressed SAUR and elevated expressed GH3, and ABA related genes such as NCED and PP2C maybe relate to reduced growth of the plant height in Ari1327 which is consistent with the higher auxin and ABA content in this mutant. Furthermore, miRNA160 targeted to the auxin response factor (ARF) and miRNA166 (gma-miR166u and gma-miR166h-3p) targeted to ABA responsive element binding factor were related to the mutation in cotton. We have noticed that the cell growth related factors (smg7 targeted by gra-miR482 and 6 novel miRNAs and Pectatelyases targeted by osa-miR159f), the redox reactions related factors (Cytochrome P450 targeted by miR172) and MYB genes targeted by miR828, miR858 and miR159 were also involved in plant height of the cotton mutants. A total of 226 conserved miRNAs representing 32 known miRNA families were obtained, and 38 novel miRNAs corresponding to 23 unique RNA sequences were identified. Total 531 targets for 211 conserved miRNAs were obtained. Using PAREsnip, 27 and 29 miRNA/target conserved interactions were validated in A1-A9 and A3-A9, respectively. Furthermore, miRNA160, miRNA858 and miRNA172 were validated to be up-regulated in A1-A9 but down-regulated in A3-A9, whereas miRNA159 showed the opposite regulation. Conclusions: This comprehensive interaction of the transcriptome and miRNA at tall-culmand dwarf mutant led to the discovery of regulatory mechanisms in plant height. It also provides the basis for in depth analyses of dwarf mutant genes for further breeding of dwarf cotton.
Project description:Background: Dwarf cottons are more resistant to damage from wind and rain and associated with stable, increased yields, and also desirable source for breeding the machine harvest varieties. In an effort to uncover the transcripts and miRNA networks involved in plant height, the transcriptome and small RNA sequencing were performed based on dwarf mutant Ari1327 (A1), tall-culm mutant Ari3697 (A3) and wild type Ari971 (A9) in Gossypium hirsutum. Results: The transcriptome sequencing analysis showed that the enriched pathways of top 3 differentially expressed genes (DEGs) were categorized as carotenoid biosynthesis, plant-pathogen interaction and plant hormone signal transduction in both A1-A9 and A3-A9. The ABA and IAA related factors were differentially expressed in the mutants. Importantly, we found the lower expressed SAUR and elevated expressed GH3, and ABA related genes such as NCED and PP2C maybe relate to reduced growth of the plant height in Ari1327 which is consistent with the higher auxin and ABA content in this mutant. Furthermore, miRNA160 targeted to the auxin response factor (ARF) and miRNA166 (gma-miR166u and gma-miR166h-3p) targeted to ABA responsive element binding factor were related to the mutation in cotton. We have noticed that the cell growth related factors (smg7 targeted by gra-miR482 and 6 novel miRNAs and Pectatelyases targeted by osa-miR159f), the redox reactions related factors (Cytochrome P450 targeted by miR172) and MYB genes targeted by miR828, miR858 and miR159 were also involved in plant height of the cotton mutants. A total of 226 conserved miRNAs representing 32 known miRNA families were obtained, and 38 novel miRNAs corresponding to 23 unique RNA sequences were identified. Total 531 targets for 211 conserved miRNAs were obtained. Using PAREsnip, 27 and 29 miRNA/target conserved interactions were validated in A1-A9 and A3-A9, respectively. Furthermore, miRNA160, miRNA858 and miRNA172 were validated to be up-regulated in A1-A9 but down-regulated in A3-A9, whereas miRNA159 showed the opposite regulation. Conclusions: This comprehensive interaction of the transcriptome and miRNA at tall-culmand dwarf mutant led to the discovery of regulatory mechanisms in plant height. It also provides the basis for in depth analyses of dwarf mutant genes for further breeding of dwarf cotton. Total RNA was purified from stem apexes of three samples at the fifth true leaf stages and sequenced deeply using Illumina HiSeq 2000 system.
Project description:Cotton seeds (Gossypium hirsutum cv. CCRI12) were grown in a growth chamber under 29/25°C temperature and a 16:8 h light:dark cycle, and water was added every two days. All plants were used in experiments at the 6-7 fully expanded true leaf stage, which occurred 5-6 weeks after sowing. Cotton bollworm (CBW; Helicoverpa armigera) larvae were reared on an artificial diet and maintained at 27 ± 2°C, 75 ± 10% relative humidity, and 14:10 h light:dark in the laboratory. For insect treatment, seven H. armigera larvae (third instars) were placed on a group of three plants, which were kept within plastic bags (30 × 40 cm), until time of harvest, with samples for each time point maintained separately. Undamaged plants maintained under the same conditions were used as controls. Cotton leaves from control plants and plants exposed to H. armigera were harvested at 6 h, 12 h, 24 h, and 48 h after onset of herbivory. For each treatment group and time point, cotton leaves were harvested from the three plants per treatment group and flash frozen in liquid nitrogen. For each time point, three replicate treatments and controls were performed. For insect treatment, seven H. armigera larvae (third instars) were placed on a group of three plants, which were kept within plastic bags (30 × 40 cm), until time of harvest, with samples for each time point maintained separately. Undamaged plants maintained under the same conditions were used as controls. Cotton leaves from control plants and plants exposed to H. armigera were harvested at 6 h, 12 h, 24 h, and 48 h after onset of herbivory. For each treatment group and time point, cotton leaves were harvested from the three plants per treatment group and flash frozen in liquid nitrogen. For each time point, three replicate treatments and controls were performed.
Project description:Transcriptome analysis in cotton under drought stress. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out in leaf tissue. Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Leaf samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome.
Project description:Transcriptome analysis in cotton during fibre development stages. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out at fibre development stages (0, 5, 10 and 20 dpa/Days post anthesis). Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome.
Project description:This study was initiated with the objective of identifying the anther/tapetum specific promoters from cotton floral buds. Cotton is an important commercial crop. Hybrid cotton varieties are developed to obtain improved yield and fiber quality. Most of the hybrid seed production in cotton is carried out by hand emasculation, which requires large amount of manpower, resulting in high cost of hybrid seed. We are developing barnase-barstar based male sterility system, which would be a better alternative for hybrid development. The tapetum specific promoters are main requirement for such a system. The study was thus carried out to identify genes expressed in the anthers.