Project description:The ETV6/RUNX1 fusion gene, present in 25% of B-lineage childhood acute lymphoblastic leukemia (ALL), is thought to represent an initiating event, which requires additional genetic changes for leukemia development. To identify additional genetic alterations, 24 ETV6/RUNX1-positive ALLs were analyzed using 500K single nucleotide polymorphism arrays. The results were combined with previously published data sets, allowing us to ascertain genomic copy number aberrations (CNAs) in 164 cases. In total, 45 recurrent CNAs were identified with an average number of 3.5 recurrent changes per case (range 0-13). Twenty-six percent of cases displayed a set of recurrent CNAs identical to that of other cases in the data set. The majority (74%), however, displayed a unique pattern of recurrent CNAs, indicating a large heterogeneity within this ALL subtype. As previously demonstrated, alterations targeting genes involved in B-cell development were common (present in 28% of cases). However, the combined analysis also identified alterations affecting nuclear hormone response (24%) to be a characteristic feature of ETV6/RUNX1-positive ALL. Studying the correlation pattern of the CNAs allowed us to highlight significant positive and negative correlations between specific aberrations. Furthermore, oncogenetic tree models identified ETV6, CDKN2A/B, PAX5, del(6q), and +16 as possible early events in the leukemogenic process. Affymetrix SNP arrays were performed according to the manufacturer's directions on DNA extracted from 23 leukemic bone marrow samples and one ETV6/RUNX1-positive cell line.
Project description:The ETV6/RUNX1 fusion gene, present in 25% of B-lineage childhood acute lymphoblastic leukemia (ALL), is thought to represent an initiating event, which requires additional genetic changes for leukemia development. To identify additional genetic alterations, 24 ETV6/RUNX1-positive ALLs were analyzed using 500K single nucleotide polymorphism arrays. The results were combined with previously published data sets, allowing us to ascertain genomic copy number aberrations (CNAs) in 164 cases. In total, 45 recurrent CNAs were identified with an average number of 3.5 recurrent changes per case (range 0-13). Twenty-six percent of cases displayed a set of recurrent CNAs identical to that of other cases in the data set. The majority (74%), however, displayed a unique pattern of recurrent CNAs, indicating a large heterogeneity within this ALL subtype. As previously demonstrated, alterations targeting genes involved in B-cell development were common (present in 28% of cases). However, the combined analysis also identified alterations affecting nuclear hormone response (24%) to be a characteristic feature of ETV6/RUNX1-positive ALL. Studying the correlation pattern of the CNAs allowed us to highlight significant positive and negative correlations between specific aberrations. Furthermore, oncogenetic tree models identified ETV6, CDKN2A/B, PAX5, del(6q), and +16 as possible early events in the leukemogenic process.
Project description:Acute lymphoblastic leukemia (ALL), the most common malignant disorder in childhood, is typically associated with numerical chromosomal aberrations, fusion genes or small focal deletions, thought to represent important pathogenetic events in the development of the leukemia. Mutations, such as single nucleotide changes, have also been reported in childhood ALL, but these have only been studied by sequencing a small number of candidate genes. Herein, we report the first unbiased sequencing of the whole exome of two cases of pediatric ALL carrying the ETV6/RUNX1 (TEL/AML1) fusion gene (the most common genetic subtype) and corresponding normal samples. A total of 14 somatic mutations were identified, including four and seven protein-altering nucleotide substitutions in each ALL. Twelve mutations (86%) occurred in genes previously described to be mutated in other types of cancer, but none was found to be recurrent in an extended series of 29 ETV6/RUNX1-positive ALLs. The number of single nucleotide mutations was similar to the number of copy number alterations as detected by single nucleotide polymorphism arrays. Although the true pathogenetic significance of the mutations must await future functional evaluations, this study provides a first estimate of the mutational burden at the genetic level of t(12;21)-positive childhood ALL. Affymetrix SNP arrays were performed according to the manufacturer's directions on DNA extracted from 2 leukemic bone marrow samples and two corresponding normal blood samples.
Project description:Acute lymphoblastic leukemia (ALL), the most common malignant disorder in childhood, is typically associated with numerical chromosomal aberrations, fusion genes or small focal deletions, thought to represent important pathogenetic events in the development of the leukemia. Mutations, such as single nucleotide changes, have also been reported in childhood ALL, but these have only been studied by sequencing a small number of candidate genes. Herein, we report the first unbiased sequencing of the whole exome of two cases of pediatric ALL carrying the ETV6/RUNX1 (TEL/AML1) fusion gene (the most common genetic subtype) and corresponding normal samples. A total of 14 somatic mutations were identified, including four and seven protein-altering nucleotide substitutions in each ALL. Twelve mutations (86%) occurred in genes previously described to be mutated in other types of cancer, but none was found to be recurrent in an extended series of 29 ETV6/RUNX1-positive ALLs. The number of single nucleotide mutations was similar to the number of copy number alterations as detected by single nucleotide polymorphism arrays. Although the true pathogenetic significance of the mutations must await future functional evaluations, this study provides a first estimate of the mutational burden at the genetic level of t(12;21)-positive childhood ALL.
Project description:Acute lymphoblastic leukemia (ALL), the most common malignant disorder in childhood, is typically associated with numerical chromosomal aberrations, fusion genes or small focal deletions, thought to represent important pathogenetic events in the development of the leukemia. Mutations, such as single nucleotide changes, have also been reported in childhood ALL, but these have only been studied by sequencing a small number of candidate genes. Herein, we report the first unbiased sequencing of the whole exome of two cases of pediatric ALL carrying the ETV6/RUNX1 (TEL/AML1) fusion gene (the most common genetic subtype) and corresponding normal samples. A total of 14 somatic mutations were identified, including four and seven protein-altering nucleotide substitutions in each ALL. Twelve mutations (86%) occurred in genes previously described to be mutated in other types of cancer, but none was found to be recurrent in an extended series of 29 ETV6/RUNX1-positive ALLs. The number of single nucleotide mutations was similar to the number of copy number alterations as detected by single nucleotide polymorphism arrays. Although the true pathogenetic significance of the mutations must await future functional evaluations, this study provides a first estimate of the mutational burden at the genetic level of t(12;21)-positive childhood ALL.
Project description:Background; The t(12;21)(p13;q22) translocation is found in 20 to 25% of cases of childhood B-lineage acute lymphoblastic leukemia (B-ALL). This rearrangement results in the fusion of ETV6 (TEL) and RUNX1 (AML1) genes and defines a relatively uniform category, although only some patients suffer very late relapse. TEL/AML1-positive patients are thus an interesting subgroup to study, and such studies should elucidate the biological processes underlying TEL/AML1 pathogenesis. We report an analysis of gene expression in 60 children with B-lineage ALL using Agilent whole genome oligo-chips (44K-G4112A) and/or real time RT-PCR. Results; We compared the leukemia cell gene expression profiles of 16 TEL/AML1-positive ALL patients to those of 44 TEL/AML1-negative patients, whose blast cells did not contain any additional recurrent translocation. Microarray analyses of 26 samples allowed the identification of genes differentially expressed between the TEL/AML1-positive and negative ALL groups. Gene enrichment analysis defined five enriched GO categories: cell differentiation, cell proliferation, apoptosis, cell motility and response to wounding, associated with 14 genes â??RUNX1, TCFL5, TNFRSF7, CBFA2T3, CD9, SCARB1, TP53INP1, ACVR1C, PIK3C3, EGFL7, SEMA6A, CTGF, LSP1, TFPIâ?? highlighting the biology of the TEL/AML1 sub-group. These results were first confirmed by the analysis of an additional microarray data-set (7 patient samples) and second by real-time RT-PCR quantification and clustering using an independent set (27 patient samples). Over-expression of RUNX1 (AML1) was further investigated and in one third of the patients correlated with cytogenetic findings. Conclusions; Gene expression analyses of leukemia cells from 60 children with TEL/AML1-positive and -negative B-lineage ALL led to the identification of five biological processes, associated with 14 validated genes characterizing and highlighting the biology of the TEL/AML1-positive ALL sub-group. Experiment Overall Design: We carried out a prospective multicentric study on childhood B-ALL leukemia to elucidate the molecular processes involved in TEL/AML1-positive leukemia. All the patients included in this study received treatment according to the French FRALLE 2000 trial. We used Agilent whole-genome oligo-chips (44K-G4112A) to compare the gene expression signatures of TEL/AML1-positive patients to those of TEL/AML1-negative patients with no recurrent chimeric products irrespective of their clinical risk category. Previous microarray gene expression studies had revealed the effect of chromosomal alteration on transcription profiles, so we excluded from our cohort those patients with other recurrent chromosomal translocations or fusion transcripts (BCR/ABL, E2A/PBX1, MLL rearrangements). We then searched for the biological pathways associated with genes differentially expressed in TEL/AML1-positive leukemia (ETV6/RUNX1).
Project description:22 plexiform neurofibromas from 18 unrelated neurofibromatosis-type 1 patients were screened with a high resolution array-CGH. Each PNF DNA (somatic tumor DNA) was individually hybridized on Agilent whole human genome 244K microarrays (Platform GPL4091) using the matched genomic constitutional DNA (lymphocytes DNA) from the corresponding patient as reference, in order to detect tumor-specific aberrations.
Project description:7 MPNSTs from 7 neurofibromatosis-type 1 patients were screened with a high resolution array-CGH. Each MPNST DNA (somatic tumor DNA) was individually hybridized on Agilent whole human genome 244K microarrays (Platform GPL4091) using the pooled genomic constitutional DNA (lymphocytes DNA) from the normal control patients as reference, in order to detect tumor-specific aberrations.
Project description:Acute lymphoblastic leukemia (ALL), the most common malignant disorder in childhood, is typically associated with numerical chromosomal aberrations, fusion genes or small focal deletions, thought to represent important pathogenetic events in the development of the leukemia. Mutations, such as single nucleotide changes, have also been reported in childhood ALL, but these have only been studied by sequencing a small number of candidate genes. Herein, we report the first unbiased sequencing of the whole exome of two cases of pediatric ALL carrying the ETV6/RUNX1 (TEL/AML1) fusion gene (the most common genetic subtype) and corresponding normal samples. A total of 14 somatic mutations were identified, including four and seven protein-altering nucleotide substitutions in each ALL. Twelve mutations (86%) occurred in genes previously described to be mutated in other types of cancer, but none was found to be recurrent in an extended series of 29 ETV6/RUNX1-positive ALLs. The number of single nucleotide mutations was similar to the number of copy number alterations as detected by single nucleotide polymorphism arrays. Although the true pathogenetic significance of the mutations must await future functional evaluations, this study provides a first estimate of the mutational burden at the genetic level of t(12;21)-positive childhood ALL. Illumina SNP-array genotyping was performed according to the manufacturer's directions on DNA extracted from 2 leukemic bone marrow samples and two corresponding normal blood samples. The genotype data from the arrays were used for quality assesment of genotype data from high throughput sequencing.
Project description:DNA copy number analysis of 67 fresh frozen chondrosarcoma biopsies using 32k BAC and 244k oligo array CGH. Genomic imbalances, in most tumors affecting large regions of the genome, were found in 90% of the cases. Although rare, recurrent amplifications were found at 8q24.21-q24.22 and 11q22.1-q22.3, and homozygous deletions of loci previously implicated in chondrosarcoma development affected the CDKN2A, EXT1 and EXT2 genes. Keywords: chondrosarcoma, array comparative genomic hybridization