Project description:KLF2 and KLF4 are important transcriptional factors in endothelial cells, however their roles in statin treatment has not been elucidated. Here we report the comprehensive change of transcripts of statin treated HUVECs transfected with siRNA KLF2 or KLF4. We used repeated microarray analysis of HUVECs treated with pitavastatin for 4hours. Before statin treatment, cells were transfected with siRNA KLF2 or KLF4.
Project description:KLF2 and KLF4 are important transcriptional factors in endothelial cells, however their roles in statin treatment has not been elucidated. Here we report the comprehensive change of transcripts of statin treated HUVECs transfected with siRNA KLF2 or KLF4. We used repeated microarray analysis of HUVECs treated with pitavastatin for 4hours. Before statin treatment, cells were transfected with siRNA KLF2 or KLF4. HUVECs were used within the first 6 passages. For studies, HUVECs were cultivated in medium EGM2MV containing pitavastatin at a concentration of 1 micromolar.
Project description:Total 23 samples were derived from [1] HUVEC treated in the absence (0h) or presence of hypoxia (1, 2, 4, 8, 12, and 24 hrs) to determine hypoxia-regulated gene in endothelial cells, [2] control siRNA or HIF1α siRNA transfected HUVEC cells treated in the absence or presence of hypoxia, [3] control siRNA or KDM3A siRNA transfected HUVEC cells treated in the absence or presence of hypoxia, [4] ChIP-seq data for HIF1 binding sites and histone modifications under normoxia and hypoxia in endothelial cells.
Project description:Total 23 samples were derived from [1] HUVEC treated in the absence (0h) or presence of hypoxia (1, 2, 4, 8, 12, and 24 hrs) to determine hypoxia-regulated gene in endothelial cells, [2] control siRNA or HIF1? siRNA transfected HUVEC cells treated in the absence or presence of hypoxia, [3] control siRNA or KDM3A siRNA transfected HUVEC cells treated in the absence or presence of hypoxia, [4] ChIP-seq data for HIF1 binding sites and histone modifications under normoxia and hypoxia in endothelial cells. This study represents 15 Samples from the gene expression part of the study described in 1,2, and 3 above. The submitter has not provided the ChIP-seq data to GEO.
Project description:Performing Chromatin IP of Klf2, Klf4, Klf5 and p53 in mouse embryonic stem cells with NimbleGen custom genomic tiling arrays, we sought to decipher Klf2, Klf4, Klf5-regulated genes. 12 samples: Chromatin IP of Klf2, Klf4, Klf5 and p53 in mouse embryonic stem cells with NimbleGen custom genomic tiling arrays; three independent experimental replicates for each experimental condition were performed.
Project description:To determine the role of STEEL in endothelial cell (EC) gene regulation, gene expression analysis was conducted on control and STEEL siRNA-treated human dermal microvascular endothelial cells (HMVECs) and human umbilical vein endothelial cells (HUVECs). A total of 225 protein-coding genes were downregulated and 80 were upregulated when both EC types were grouped for analysis. In HMVEC alone, 544 protein-coding genes were downregulated and 218 were upregulated. In HUVEC alone, 177 protein-coding genes were downregulated and 125 were upregulated. Prominently, STEEL siRNA depletion results in the downregulation of two notable protein-coding genes, eNOS and KLF2, which are modulated in ECs subjected to continuous laminar shear stress.
Project description:Analysis of umbilical vein endothelial cells (HUVEC) treated with Egr-3 siRNA under the VEGF treatment for 0,1, and 4 h. Egr-3, a member of early growth response family, is immediately and dramatically induced by VEGF in HUVEC, which regulates expression of many genes related to endothelial activation. Experiment Overall Design: Total 21 samples were derived from triplicate arrays of VEGF-treated si-Control-transfected cells and duplicate arrays of each of the VEGF-treated si-Egr-3-transfected cells.