Project description:This SuperSeries is composed of the following subset Series: GSE32464: Global gene expression analysis in murine iPS cells derived with mouse and human Nanog orthologs GSE32650: Global gene expression analysis in murine iPS cells derived with mouse, chick and zebrafish Nanog orthologs Refer to individual Series
Project description:Nanog null neural stem (NS) cells were reprogrammed to naive pluripotency in 2i/LIF conditions with chick (c) and zebrafish (z) Nanog orthologs. Global gene expression was compared to iPS cells derived with mouse (m) Nanog. Murine iPS cells derived with zebrafish nanog, chick nanog, and mouse nanog orthologs (2 replicates each).
Project description:Nanog null neural stem (NS) cells were reprogrammed to naive pluripotency in 2i/LIF conditions with chick (c) and zebrafish (z) Nanog orthologs. Global gene expression was compared to iPS cells derived with mouse (m) Nanog.
Project description:Nanog null neural stem (NS) cells were reprogrammed to naive pluripotency in 2i/LIF conditions with mouse (m) Nanog and human (h) Nanog. Global gene expression in resulting iPS cells was compared to embryonic stem (ES) cells and nanog null NS cells. Murine iPS cells derived with mouse nanog iPS and human nanog iPS and then compared to embryonic stem cells and nanog null neural stem cells (3 replicates each).
Project description:Nanog null neural stem (NS) cells were reprogrammed to naive pluripotency in 2i/LIF conditions with mouse (m) Nanog and human (h) Nanog. Global gene expression in resulting iPS cells was compared to embryonic stem (ES) cells and nanog null NS cells.
Project description:Background and aim: Human Induced pluripotent stem (iPS) cells have been derived from dermal fibroblasts, keratinocytes and blood cells by ectopic expression of defined transcription factors.1–5 Application of this approach in human cells would have enormous potential and generate patient-specific pluripotent stem cells to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. In the present study, we investigated whether genetically marked human mesenchymal cells of gut mesentery may give rise to iPS cells. Methods: We used lentiviruses to express Oct4, Sox2, Nanog in mesenchymal cells of gut mesentery, then generated iPS cells were identified in many aspects including morphology, pluripotent markers, global gene expression profile, DNA methylation status at pluripotent cell-specific genes, embryoid bodies and terotomas formation. Results: The resulting iPS cells from mesenchymal cells of gut mesentery were similar to human embryonic stem (ES) cells in morphology, proliferation, surface antigens, gene expression, and epigenetic status of pluripotent cell-specific genes. Furthermore, these cells could differentiate into cell types of the three germ layers in vitro and in teratomas. DNA fingerprinting showed that the human iPS cells were derived from the donor cells and are not a result of contamination.
Project description:In this study we have compared functional and molecular properties of highly purified murine induced pluripotent stem (iPS) cell- and embryonic stem (ES) cell-derived cardiomyocytes (CM). In order to obtain large amounts of purified CM, we have generated a transgenic murine iPS cell line, which expresses puromycin resistance protein N-acetyltransferase and EGFP under the control of the cardiomyocyte-specific α-myosin heavy chain promoter (alphaMHC-Puro-IRES-GFP, aPiG). We demonstrate that murine aPIG-iPS and aPIG-ES cells differentiate into spontaneously beating CM at comparable efficiencies. When selected with puromycin both cell types yielded more than 97% pure population of CMs. Both aPIG-iPS and aPIG-ES cell-derived CM express typical cardiac transcripts and structural proteins and possess similar sarcomeric organization. Action potential recordings revealed that iPS- and ES cell-derived CM respond to beta-adrenergic and muscarinic receptor modulation, express functional voltage-gated sodium, calcium and potassium channels and possess comparable current densities. Comparison of global gene expression profiles of CM generated from iPS and ES cells revealed that both cell types cluster close to each other but are highly distant to undifferentiated ES or iPS cells as well as unpurified iPS and ES cell-derived embryoid bodies (EB). Both iPS and ES cell-derived CMs express genes and functional categories typical for CM. They are enriched in genes involved in transcription and genes coding for structural proteins involved in cardiac muscle contraction and relaxation. They also express genes involved in heart and muscle developmental processes, ion export and ion binding processes and various metabolic processes for ATP synthesis. These CMs downregulate genes involved in immune response, cell cycle and cell division, thus demonstrating the CMs population is mitotically inactive. Most surface signaling pathways are also downregulated. Thus, a transgenic aPiG-iPS cell line can provide a robust supply of highly purified and functional CMs for future in vitro and in vivo studies. Seven different experimental groups were included into analysis: undifferentiated murine ES cells (1) and undifferentiated murine iPS cells (2), murine ES cell-derived embyroid bodies (3) and murine iPS cell-derived embryoid bodies at day 16 of differentiation (4), murine ES cell-derived cardiomyocytes (5) and murine iPS cell-derived cardiomyocytes (6) at day 16 of differentiation (they were generated by puromycin selection for 7 days prior to RNA isolation). Adult mouse tail tip fibroblasts (7) were used as a control for iPS cells. Total RNA samples were prepared from three independent biological replicates in groups 1-6. In group 7, single RNA probes were analyzed as three technical replicates.
Project description:It has been shown that DNA demethylation has a pivotal role in the generation of induced pluripotent stem (iPS) cells. However, the underlying mechanism is still unclear. Previous reports indicated that activation-induced cytidine deaminase (Aid) is involved in DNA demethylation in several developmental processes and cell fusion-mediated reprogramming. Based on the reports, we hypothesized that Aid may be involved in DNA demethylation during the iPS cell generation. In this study, we examined the function of Aid in iPS cell generation using Aid knockout (Aid-/-) mice expressing a GFP reporter under the control of a pluripotent stem cell marker, Nanog. By the introduction of Oct3/4, Sox2, Klf4 and c-Myc, Nanog-GFP positive iPS cells could be generated from the fibroblasts and primary B cells of Aid-/- mice. The Aid-/- iPS cells showed normal proliferation and gave rise to chimeras, indicating their capacity for self-renewal and pluripotency. Microarray analysis demonstrated that the global gene expression of Aid-/- iPS cells was similar to that of Aid+/+ iPS cells. Aid+/+ and Aid-/- iPS colonies were generated from Aid+/+ and Aid-/- MEFs and picked up mechanically. The clones were passaged four times on feeder cells and two times on gelatin-coated dishes to exclude the contamination of feeder cells. Subsequently, the RNA was isolated. Six Aid+/+ iPS cell clones and six Aid-/- iPS cell clones were compared by microarray.