Project description:Transcriptional profiling of Corynebacterium glutamicum cells comparing wild-type cells with cg0196 deletion mutant cells by site-specific gene deletion using the non-replicable integration vector. cg0196 is gene conding transcriptional regulator related carbon metabolism. Two-condition experiment, Wild vs. Δcg0196 cells. Independently grown and harvested. One replicate per array.
Project description:Transcriptional profiling of Corynebacterium glutamicum cells comparing wild-type cells with cg0196 deletion mutant cells by site-specific gene deletion using the non-replicable integration vector. cg0196 is gene conding transcriptional regulator related carbon metabolism.
Project description:To identify genes which are differentially expressed in Corynebacterium glutamicum in the cg2460 deletion strain, we performed DNA microarray analyses of C. glutamicum Δcg2460 compared to the WT.
Project description:To identify genes which are differentially expressed in Corynebacterium glutamicum in the cg2699 deletion strain, we performed DNA microarray analyses of C. glutamicum Δcg2699 compared to the WT.
Project description:The response regulator HrrA belonging to the HrrSA two-component system (previously named CgtSR11) is known to be repressed by the global iron-dependent regulator DtxR in Corynebacterium glutamicum. Sequence analysis indicated an involvement of the HrrSA system in heme-dependent gene expression. Growth experiments revealed that the non-pathogenic soil bacterium C. glutamicum is able to use hemin or hemoglobin as sole iron source. In DNA microarray analyses a putative operon encoding the hemin-binding protein HtaA and the putative hemin ABC transporter HmuTUV showed a strong upregulation in heme-grown cells. Deletion of the hmu operon clearly affects heme utilization, but does not completely abolish growth on heme or hemoglobin. As a central part of this study, we investigated the regulon of the response regulator HrrA via comparative transcriptome analysis of a hrrA deletion mutant and C. glutamicum wild type in combination with DNA-protein interaction studies with purified HrrA protein. Our data provide evidence for a heme-dependent transcriptional activation of heme oxygenase (hmuO), an enzyme involved in the utilization of heme as iron source. Besides hmuO, HrrA was shown to activate the expression of heme-containing components of the respiratory chain, namely ctaD and the ctaE-qcrCAB operon encoding subunits I and III of cytochrome aa3 oxidase and three subunits of the cytochrome bc1 complex. Furthermore, HrrA represses almost all genes involved in heme biosynthesis, including glutamyl-tRNA reductase (hemA), uroporphyrinogen decarboxylase (hemE), and ferrochelatase (hemH). Thus, our data clearly emphasize a central role of the HrrSA system in the control of heme homeostasis in C. glutamicum. Three biological replicates of each experiment were performed. Experiment 1: Transcriptome comparison of wild type grown und FeSO4 or heme as iron source; Exp. 2: WT vs. hrrA deletion mutant grown on FeSO4; Exp. 3: WT vs. hrrA mutant grown on heme. For analysis via DNA microarraysose RNA was isolated from exponentially growing cells cultivated in CgXII medium containing glucose as carbon source and either 2.5 uM FeSO4 or 2.5 uM heme as iron source.
Project description:In a manner similar to ubiquitin, the prokaryotic ubiquitin-like protein (Pup) has been shown to target proteins for degradation via the proteasome in mycobacteria. However, not all actinobacteria possessing the Pup protein also harbor a proteasome, suggesting fates for pupylated proteins other than degradation via a proteasome or degradation at all. In the present study we set out to study pupylation in the proteasome-lacking non-pathogenic model microorganism and biotechnological workhorse Corynebacterium glutamicum. A defined pup deletion mutant of C. glutamicum ATCC 13032 grew as the control indicating that pupylation seems to be dispensable under the conditions tested. By expression of homologous Pup carrying a poly-histidine tag in C. glutamicum ATCC 13032 we purified the first pupylome of a microorganism lacking a proteasome. Multidimensional Protein Identification Technology (MudPIT) unraveled 54 proteins being pupylated in this organism. Similar to mycobacteria, the majority of pupylated proteins in C. glutamicum can be classified as enzymes of the metabolism or as involved in translation. These results help to elucidate the common target pathways of pupylation in bacteria.
Project description:The metabolic status of individual cells in microbial cultures can differ being relevant for biotechnology, environmental and medical microbiology. However, it is hardly understood in molecular detail due to limitations of current analytical tools. Here, we demonstrate that FACS in combination with proteomics can be used to sort and analyze cell populations based on their metabolic state. A previously established GFP reporter system was used to detect and sort single Corynebacterium glutamicum cells based on the concentration of branched chain amino acids (BCAA) using FACS. A proteomics workflow optimized for small cell numbers was used to quantitatively compare proteomes of a ?aceE mutant, lacking functional pyruvate dehydrogenase (PD), and the wild type. About 800 proteins could be quantified from 1,000,000 cells. In the ?aceE mutant BCAA production was coordinated with upregulation of the glyoxylate cycle and TCA cycle to counter the lack of acetyl CoA resulting from the deletion of aceE.
Project description:Metabolically engineered Corynebacterium glutamicum strains were constructed for the enhanced production of L-arginine, and their gene expression profiles were investigated