Project description:Samples GSM206658-GSM206693: Acquired Stress resistance in S. cerevisiae: NaCl primary and H2O2 secondary Transcriptional timecourses of yeast cells exposed to 0.7M NaCl alone, 0.5mM H2O2 alone, or 0.5mM H2O2 following 0.7M NaCl, all compared to an unstressed sample. Repeated using msn2∆ strain. Samples GSM291156-GSM291196: Transcriptional response to stress in strains lacking MSN2 and/or MSN4 Transcriptional timecourses of yeast cells (WT, msn2∆, msn4∆, or msn2∆msn4∆) exposed to 0.7M NaCl for 45 minutes or 30-37˚C Heat Shift for 15 min compared to an unstressed sample of the same strain. Keywords: Stress Response
Project description:We subjected yeast to two stresses, oxidative stress, which under current settings induces a fast and transient response in mRNA abundance, and DNA damage, which triggers a slow enduring response. Using microarrays we performed a conventional quantification of change in mRNA abundance. Keywords: Two separate time courses
Project description:Proteotoxic stress triggers adaptive cellular responses, including changes in gene expression on the levels of transcription and translation. In this study, we analyzed the translational response of yeast cells to impaired protein import into mitochondria, a condition under which mitochondrial precursor proteins accumulate in the cytosol and impose proteotoxic stress. We analyzed changes in translational efficiency as well as more subtle changes in the distribution of ribosomes along transcripts, with a special focus on translation initiation sites.
Project description:We subjected yeast to two stresses, oxidative stress, which under current settings induces a fast and transient response in mRNA abundance, and DNA damage, which triggers a slow enduring response. Using microarrays, we performed a transcriptional arrest experiment to measure genome-wide mRNA decay profiles under each condition. Genome-wide decay kinetics in each condition were compared to decay experiments that were performed in a reference condition (only transcription inhibition without an additional stress) to quantify changes in mRNA stability in each condition. We found condition-specific changes in mRNA decay rates and coordination between mRNA production and degradation. In the transient response, most induced genes were surprisingly destabilized, while repressed genes were somewhat stabilized, exhibiting counteraction between production and degradation. This strategy can reconcile high steady-state level with short response time among induced genes. In contrast, the stress that induces the slow response displays the more expected behavior, whereby most induced genes are stabilized, and repressed genes destabilized. Our results show genome-wide interplay between mRNA production and degradation, and that alternative modes of such interplay determine the kinetics of the transcriptome in response to stress. Keywords: Four separate time courses