Project description:Here we used Illumina NGS for high-throughput profiling of the DNA methylome in seven human benign prostate tissues, seven human primary prostate cancer and six human castration resistant prostate cancer patient samples. These data were used to profile the CpG cytosine methylation pattern at single base resolution in each sample and to determine differentially methylated cytosines and regions among samples. Enhanced Reduced Representation Bisulfite Sequencing (ERRBS, MspI,150M-bM-^@M-^S400 bp size fractions) of 20 human prostate tissues (benign prostate tissues, localized and metastatic prostate cancer)
Project description:Bulk RNA sequencing of peripheral blood neutrophils from prostate cancer at different stages of disease progression, including localized disease, hormone-sensitive- and castration-resistant metastatic prostate cancer
Project description:To elucidate the regulation of NSD2 in metastatic castration-resistant prostate cancer(CRPC), we performed Hi-C against castration-sensitive prostate cancer cell line LNCaP and metastatic castration-resistant prostate cancer cell lines, PC3 respectively. In metastatic CRPC, we found specific regions of activation with epigenetic changes.
Project description:We compared 22 primary Pca (hormone-dependent) versus 29 metastatic Pca (CRPC). The expression of genes related to cell cycle, proliferation, DNA synthesis, and androgen metablism are significantly increased in CRPC group. The expression of AR-stimulated genes were partially reactivated. TMPRSS2-ERG fusion status was determined for the samples by PCR. The expression of ERG was highly increased in fusion positive versus negative. 120 snap-frozen CT-guided bone marrow biopsies from patients with castration-resistant prostate cancer were collected as a source of material. 29 independent biopsies containing mostly tumor were identified as CRPC group through carefully microscopical examination. 4 samples containing no tumor were identified as normal bone marrow group. Primary tumor was isolated by LCM from frozen biopsies of hormone-naive patients. 22 samples were selected as primary PCa group.
Project description:To elucidate the regulation of NSD2 in metastatic castration-resistant prostate cancer(CRPC), we performed ChIP-seq of H3K36me2, H3K27me3, H3K4me1, H3K4me3,H3K27ac and NSD2 against castration-sensitive prostate cancer cell line LNCaP and metastatic castration-resistant prostate cancer cell lines, PC3 and DU145, respectively. In metastatic CRPC, we found specific regions of activation with epigenetic changes.
Project description:To elucidate the regulation of NSD2 in metastatic castration-resistant prostate cancer(CRPC), we performed ChIP-seq of H3K36me2, H3K27me3, H3K4me1, H3K4me3,H3K27ac and NSD2 against castration-sensitive prostate cancer cell line LNCaP and metastatic castration-resistant prostate cancer cell lines, PC3 and DU145, respectively. In metastatic CRPC, we found specific regions of activation with epigenetic changes.
Project description:Androgen deprivation is the mainstay of therapy for progressive prostate cancer. Despite initial and dramatic tumor inhibition, most men eventually fail therapy and die of metastatic castration-resistant (CR) disease. Here, we characterize the profound degree of genomic alteration found in CR tumors using array CGH, gene expression arrays, and FISH. By cluster analysis, we show that the similarity of the genomic profiles from primary and metastatic tumors is driven by the patient. Using data adjusted for this similarity, we identify numerous high-frequency alterations in the CR tumors, such as 8p loss and chromosome 7 and 8q gain. By integrating array CGH and expression array data, we reveal genes whose correlated values suggest they are relevant to prostate cancer biology. We find alterations that are significantly associated with the metastases of specific organ sites, and others with CR tumors versus the tumors of patients with localized prostate cancer, not treated with androgen deprivation. Within the high-frequency sites of loss in CR metastases, we find an over-representation of genes involved in cellular lipid metabolism, including PTEN. Finally, using FISH we verify the presence of a gene fusion between TMPRSS2 and ERG suggested by chromosome-21 deletions detected by array CGH. We find the fusion in 54% of our CR tumors, and 81% of the fusion-positive tumors contain cells with multiple copies of the fusion. Our investigation lays the foundation for a better understanding of and possible therapeutic targets for CR disease, the poorly responsive and final stage of prostate cancer. The aim of this study was to characterize the genomic changes identified in a set of matched castrate-resistant primary and metastatic prostate cancers. Tumor cells were isolated by laser-capture microdissection from 14 patients, a total of 54 tumor samples. LCM capture samples were isolated from multiple metastastases from all but one patient from whom a single metastasis was available. Primary prostate tumor samples were collected from 12 patients. DNA was amplified by either ligation-mediated PCR (LMP) or WGA (Sigma-Aldrich, St. Louis, MO, USA). Reference DNA was isolated from peripheral blood from a single female individual.
Project description:Docetaxel-based chemotherapy is the standard first-line therapy in metastatic castration-resistant prostate cancer. However, most patients eventually develop resistance to this treatment. The aim of the study was to identify key molecular genes and networks associated with docetaxel resistance in 2 models of docetaxel-resistant castration-resistant prostate cancer cell lines.
Project description:Higher expression levels of DLX1 has been associated with primary and metastatic prostate tumor. DLX1 along with HOXC6 is well-established diagnostic biomarker for the early detection of prostate cancer (PCa). However, the mechanism involved in DLX1 up-regulation and functional significance in metastatic castration-resistant prostate cancer (mCRPC) progression remains unexplored. Here, we identified that DLX1 serves as an oncogene thereby regulating several oncogenic properties associated with PCa progression.
Project description:Prostate cancer is one of the major cancers that seriously affect men's health. It has high morbidity and high mortality, but there is still no ideal molecular markers for the diagnosis and prognosis of prostate cancer. Castration-resistant prostate cancer is associated with wide variations in survival. To determine whether differentially expressed circRNAs in plasma exosomes can be used as a novel biomarker for castration-resistant prostate cancer prognosis, we performed high-throughput circRNA sequencing on 15 pairs of plasma exosomes from 30 metastatic castration-resistant prostate cancer patients, with or without early progression, to screen differentially expressed circRNAs.