Project description:Our previous work demonstrated that HIV-1 infection progressively reduces TCR/CD3 expression due to a defect in CD3g gene transcripts. We further found that knocking down expression of the viral tat and/or nef genes was correlated with CD3g transcript and TCR/CD3 surface receptor levels on HIV-1 infected cells. This study was undertaken to investigate the direct effect of HIV-1 Tat expression on the TCR/CD3 machinery. Progressive downregulation from TCR/CD3hi to TCR/CD3lo to TCR/CD3â was observed on Tat expressing cells in a manner that emulated HIV-1 infection, with a lack of CD3g transcripts again responsible for the defect. When Tat cell cultures containing a mixture of TCR/CD3 surface densities were separated into TCR/CD3hi and TCR/CD3lo/â populations, they quickly reverted to a mixed CD3 phenotype. Thus, the progression TCR/CD3hi to TCR/CD3lo to TCR/CD3â is an active, reversible process with receptor levels fluctuating in response to intracellular dynamics. Examination of tat mutants found that the regions involved in Tat-mediated transactivation and TAR binding are required for TCR/CD3 downregulation while the lysine at position 28 and Tat exon 2 are dispensable. Global gene expression, assessed in association with TCR/CD3 downregulation in HIV-1 infected and Tat expressing cells, detected broad suppression of TCR/CD3 signaling, co-stimulation and negative regulatory genes along with target transcription factors, ligands and receptors. A significant subset of the genes altered in HIV-1 infected cells was specifically targeted by Tat in association with TCR/CD3 loss. Our finding that Tat negatively regulates many facets of the TCR/CD3 machinery has important implications for disease pathogenesis. We used microarrays to investigate changes in CD4+ T cell gene expression induced by HIV-1 infection for comparison with the Tat expressing cells. Examine changes in gene expression in TCR/CD3 negative HIV-1 infected cells compared to TCR/CD3 positive uninfected controls.
Project description:Our previous work demonstrated that HIV-1 infection progressively reduces TCR/CD3 expression due to a defect in CD3g gene transcripts. We further found that knocking down expression of the viral tat and/or nef genes was correlated with CD3g transcript and TCR/CD3 surface receptor levels on HIV-1 infected cells. This study was undertaken to investigate the direct effect of HIV-1 Tat expression on the TCR/CD3 machinery. Progressive downregulation from TCR/CD3hi to TCR/CD3lo to TCR/CD3â was observed on Tat expressing cells in a manner that emulated HIV-1 infection, with a lack of CD3g transcripts again responsible for the defect. When Tat cell cultures containing a mixture of TCR/CD3 surface densities were separated into TCR/CD3hi and TCR/CD3lo/â populations, they quickly reverted to a mixed CD3 phenotype. Thus, the progression TCR/CD3hi to TCR/CD3lo to TCR/CD3â is an active, reversible process with receptor levels fluctuating in response to intracellular dynamics. Examination of tat mutants found that the regions involved in Tat-mediated transactivation and TAR binding are required for TCR/CD3 downregulation while the lysine at position 28 and Tat exon 2 are dispensable. Global gene expression, assessed in association with TCR/CD3 downregulation in HIV-1 infected and Tat expressing cells, detected broad suppression of TCR/CD3 signaling, co-stimulation and negative regulatory genes along with target transcription factors, ligands and receptors. A significant subset of the genes altered in HIV-1 infected cells was specifically targeted by Tat in association with TCR/CD3 loss. Our finding that Tat negatively regulates many facets of the TCR/CD3 machinery has important implications for disease pathogenesis. We used microarrays to investigate changes in CD4+ T cell gene expression induced by expression of the HIV-1 Tat protein. Examine changes in gene expression in HIV-1 Tat transduced cells compared with cells transduced with an antisense Tat sequence used as a control.
Project description:Our previous work demonstrated that HIV-1 infection progressively reduces TCR/CD3 expression due to a defect in CD3g gene transcripts. We further found that knocking down expression of the viral tat and/or nef genes was correlated with CD3g transcript and TCR/CD3 surface receptor levels on HIV-1 infected cells. This study was undertaken to investigate the direct effect of HIV-1 Tat expression on the TCR/CD3 machinery. Progressive downregulation from TCR/CD3hi to TCR/CD3lo to TCR/CD3− was observed on Tat expressing cells in a manner that emulated HIV-1 infection, with a lack of CD3g transcripts again responsible for the defect. When Tat cell cultures containing a mixture of TCR/CD3 surface densities were separated into TCR/CD3hi and TCR/CD3lo/− populations, they quickly reverted to a mixed CD3 phenotype. Thus, the progression TCR/CD3hi to TCR/CD3lo to TCR/CD3− is an active, reversible process with receptor levels fluctuating in response to intracellular dynamics. Examination of tat mutants found that the regions involved in Tat-mediated transactivation and TAR binding are required for TCR/CD3 downregulation while the lysine at position 28 and Tat exon 2 are dispensable. Global gene expression, assessed in association with TCR/CD3 downregulation in HIV-1 infected and Tat expressing cells, detected broad suppression of TCR/CD3 signaling, co-stimulation and negative regulatory genes along with target transcription factors, ligands and receptors. A significant subset of the genes altered in HIV-1 infected cells was specifically targeted by Tat in association with TCR/CD3 loss. Our finding that Tat negatively regulates many facets of the TCR/CD3 machinery has important implications for disease pathogenesis. We used microarrays to investigate changes in CD4+ T cell gene expression induced by HIV-1 infection for comparison with the Tat expressing cells.
Project description:Our previous work demonstrated that HIV-1 infection progressively reduces TCR/CD3 expression due to a defect in CD3g gene transcripts. We further found that knocking down expression of the viral tat and/or nef genes was correlated with CD3g transcript and TCR/CD3 surface receptor levels on HIV-1 infected cells. This study was undertaken to investigate the direct effect of HIV-1 Tat expression on the TCR/CD3 machinery. Progressive downregulation from TCR/CD3hi to TCR/CD3lo to TCR/CD3− was observed on Tat expressing cells in a manner that emulated HIV-1 infection, with a lack of CD3g transcripts again responsible for the defect. When Tat cell cultures containing a mixture of TCR/CD3 surface densities were separated into TCR/CD3hi and TCR/CD3lo/− populations, they quickly reverted to a mixed CD3 phenotype. Thus, the progression TCR/CD3hi to TCR/CD3lo to TCR/CD3− is an active, reversible process with receptor levels fluctuating in response to intracellular dynamics. Examination of tat mutants found that the regions involved in Tat-mediated transactivation and TAR binding are required for TCR/CD3 downregulation while the lysine at position 28 and Tat exon 2 are dispensable. Global gene expression, assessed in association with TCR/CD3 downregulation in HIV-1 infected and Tat expressing cells, detected broad suppression of TCR/CD3 signaling, co-stimulation and negative regulatory genes along with target transcription factors, ligands and receptors. A significant subset of the genes altered in HIV-1 infected cells was specifically targeted by Tat in association with TCR/CD3 loss. Our finding that Tat negatively regulates many facets of the TCR/CD3 machinery has important implications for disease pathogenesis. We used microarrays to investigate changes in CD4+ T cell gene expression induced by expression of the HIV-1 Tat protein.
Project description:Our previous work demonstrated that HIV-1 infection progressively reduces TCR/CD3 expression due to a defect in CD3g gene transcripts. We further found that knocking down expression of the viral tat and/or nef genes was correlated with CD3g transcript and TCR/CD3 surface receptor levels on HIV-1 infected cells. This study was undertaken to investigate the direct effect of HIV-1 Tat expression on the TCR/CD3 machinery. Progressive downregulation from TCR/CD3hi to TCR/CD3lo to TCR/CD3? was observed on Tat expressing cells in a manner that emulated HIV-1 infection, with a lack of CD3g transcripts again responsible for the defect. When Tat cell cultures containing a mixture of TCR/CD3 surface densities were separated into TCR/CD3hi and TCR/CD3lo/? populations, they quickly reverted to a mixed CD3 phenotype. Thus, the progression TCR/CD3hi to TCR/CD3lo to TCR/CD3? is an active, reversible process with receptor levels fluctuating in response to intracellular dynamics. Examination of tat mutants found that the regions involved in Tat-mediated transactivation and TAR binding are required for TCR/CD3 downregulation while the lysine at position 28 and Tat exon 2 are dispensable. Global gene expression, assessed in association with TCR/CD3 downregulation in HIV-1 infected and Tat expressing cells, detected broad suppression of TCR/CD3 signaling, co-stimulation and negative regulatory genes along with target transcription factors, ligands and receptors. A significant subset of the genes altered in HIV-1 infected cells was specifically targeted by Tat in association with TCR/CD3 loss. Our finding that Tat negatively regulates many facets of the TCR/CD3 machinery has important implications for disease pathogenesis. This SuperSeries is composed of the SubSeries listed below. Refer to individual Series
Project description:Our previous work demonstrated that HIV-1 infection progressively reduces TCR/CD3 expression due to a defect in CD3g gene transcripts. We further found that knocking down expression of the viral tat and/or nef genes was correlated with CD3g transcript and TCR/CD3 surface receptor levels on HIV-1 infected cells. This study was undertaken to investigate the direct effect of HIV-1 Tat expression on the TCR/CD3 machinery. Progressive downregulation from TCR/CD3hi to TCR/CD3lo to TCR/CD3? was observed on Tat expressing cells in a manner that emulated HIV-1 infection, with a lack of CD3g transcripts again responsible for the defect. When Tat cell cultures containing a mixture of TCR/CD3 surface densities were separated into TCR/CD3hi and TCR/CD3lo/? populations, they quickly reverted to a mixed CD3 phenotype. Thus, the progression TCR/CD3hi to TCR/CD3lo to TCR/CD3? is an active, reversible process with receptor levels fluctuating in response to intracellular dynamics. Examination of tat mutants found that the regions involved in Tat-mediated transactivation and TAR binding are required for TCR/CD3 downregulation while the lysine at position 28 and Tat exon 2 are dispensable. Global gene expression, assessed in association with TCR/CD3 downregulation in HIV-1 infected and Tat expressing cells, detected broad suppression of TCR/CD3 signaling, co-stimulation and negative regulatory genes along with target transcription factors, ligands and receptors. A significant subset of the genes altered in HIV-1 infected cells was specifically targeted by Tat in association with TCR/CD3 loss. Our finding that Tat negatively regulates many facets of the TCR/CD3 machinery has important implications for disease pathogenesis. This SuperSeries is composed of the SubSeries listed below.
Project description:HIV-1 Tat protein is essential for virus production. RNA-binding proteins that facilitate Tat production may be absent or downregulated in resting CD4+ T-cells, the main reservoir of latent HIV. In this study, we examined the role of Tat RNA-binding proteins on the expression of Tat and control of latent and productive infection.
Project description:Human Immunodeficiency Virus type-1 (HIV-1)-infected individuals show metabolic alterations of CD4 T cells through unclear mechanisms with undefined consequences. We analyzed the transcriptome of CD4 T cells from HIV-1 patients and revealed that elevated oxidative phosphorylation (OXPHOS) pathway is associated with poor outcomes. Inhibition of OXPHOS by the FDA-approved drug metformin, which targets mitochondrial respiratory chain complex I, suppresses HIV-1 replication in human CD4 T cells and humanized mice. In patients, HIV-1 peak viremia positively correlates with the expression of NLRX1, a mitochondrial innate immune receptor. Quantitative proteomics and metabolic analyses reveal that NLRX1 enhances OXPHOS and glycolysis during HIV-1-infection of CD4 T cells to promote viral replication. At the mechanistic level, HIV infection induces the association of NLRX1 with the mitochondrial protein, FASTKD5, to promote the expression of mitochondrial respiratory complex components. This study uncovers the OXPHOS pathway in CD4 T cells as a target for HIV-1 therapy.