Project description:The molecular role of iron in gene expression remains poorly characterized. Moreover, the alterations in global gene expression after iron chelation remains unclear and are important to assess for understanding the molecular pathology of iron-depletion and the biological effects of iron chelators. We assessed the effect on whole genome gene expression of two iron chelators (desferrioxamine and Dp44mT). These studies are important for understanding the molecular and cellular effects of iron-depletion.
Project description:Gene expression analysis of SW480 cells treated with inhibitor compounds for 6 hours. Results provide insights into the role of iron in Wnt signalling and demonstrate that iron depletion is the primary mode of actions of these compounds on Wnt pathway. SW480 cells were incubated with 10 mM of compounds (OICR623), control (DMSO) and two known iron chelators (DFO and Deferasirox) for 6 hours. RNA was extracted and cDNA samples isolated from 2-4 independent experiments were hybridized to the Affymetrix GeneChip® Human Gene 1.0 ST array.
Project description:Iron-deficiency affects 500 million people, yet the molecular role of iron in gene expression remains poorly characterized. Moreover, the alterations in global gene expression after iron chelation remains unclear and are important to assess for understanding the molecular pathology of iron-deficiency and the biological effects of iron chelators. We assessed the effect on whole genome gene expression of two iron chelators (desferrioxamine and 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone) that have markedly different permeability properties. Sixteen genes were significantly regulated by both chelators, while a further 50 genes were regulated by either ligand. Most of the genes identified in this study have not been previously described to be iron-regulated and are important for understanding the molecular and cellular effects of iron-deficiency.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Iron-deficiency affects 500 million people, yet the molecular role of iron in gene expression remains poorly characterized. Moreover, the alterations in global gene expression after iron chelation remains unclear and are important to assess for understanding the molecular pathology of iron-deficiency and the biological effects of iron chelators. We assessed the effect on whole genome gene expression of two iron chelators (desferrioxamine and 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone) that have markedly different permeability properties. Sixteen genes were significantly regulated by both chelators, while a further 50 genes were regulated by either ligand. Most of the genes identified in this study have not been previously described to be iron-regulated and are important for understanding the molecular and cellular effects of iron-deficiency. The MCF-7 cells were incubated with either control medium or this medium containing DFO (250 µM) or 311 (25 µM) for 24 h at 37oC. These concentrations were used since our previous studies demonstrated that under these conditions these chelators lead to up-regulation of iron-responsive genes such as the TfR1 after this incubation time.8 Moreover, the higher concentration of DFO was implemented due to its limited ability to permeate cell membranes. Total RNA was isolated from cells in 1 mL of TRIzol® reagent (Invitrogen). Samples were then prepared and hybridized to the Human Genome U133 Plus 2.0 430 2.0. The human GeneChip® U133 Plus 2.0 consists of greater than 47,000 transcripts and variants from over 38,500 well characterized human genes. On completion of hybridization and washing, microarray chips were scanned with the Affymetrix GeneChip® Scanner 3000 (Affymetrix).
Project description:The molecular role of iron in gene expression remains poorly characterized. Moreover, the alterations in global gene expression after iron chelation remains unclear and are important to assess for understanding the molecular pathology of iron-depletion and the biological effects of iron chelators. We assessed the effect on whole genome gene expression of two iron chelators (desferrioxamine and Dp44mT). These studies are important for understanding the molecular and cellular effects of iron-depletion. The DMS-53 cells were incubated with either control medium or this medium containing DFO (250 µM) or Dp44mT (25 µM) for 24 h at 37oC. These concentrations were used since our previous studies demonstrated that under these conditions these chelators lead to up-regulation of iron-responsive genes such as the TfR1 after this incubation time. Moreover, the higher concentration of DFO was implemented due to its limited ability to permeate cell membranes. Total RNA was isolated from cells in 1 mL of TRIzol® reagent (Invitrogen). Samples were then prepared and hybridized to the Human Genome U133 Plus 2.0 430 2.0. The human GeneChip® U133 Plus 2.0 consists of greater than 47,000 transcripts and variants from over 38,500 well characterized human genes. On completion of hybridization and washing, microarray chips were scanned with the Affymetrix GeneChip® Scanner 3000 (Affymetrix).
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression. Two-condition experiment, Normoxic MSCs vs. Hypoxic MSCs.