Project description:Epithelial ovarian cancer is the leading cause of death from gynecological malignancies. Currently platinum-based chemotherapy, coupled with a taxane based drug is the primary treatment for ovarian cancer. Approximately 25% of patients either present with or rapidly develop resistance to platinum based chemotherapy and all recurrent tumors ultimately become resistant. Epigenetic modifications have been associated with tumor formation and progression and may contribute to therapy response. We performed a methylation screen on a set of tumors and have found a number of genes and family members differentially methylated between resistant patients and sensitive patients. Here we show that loss of expression of CHD3, a member of the Mi-2/NuRD complex, causes increased resistance to platinum chemotherapy drugs. Additionally, ovarian cell lines transcriptionally silenced for CHD3 are more invasive, have migratory ability, and display a transformed epithelial to mesenchymal (EMT) phenotype. Taken together, we provide the first evidence of a role for CHD3 as an important epigenetic regulator of chemoresistance in ovarian cancer and hypothesize EMT as one of the underlying mechanisms. Furthermore, CHD3 expression might represent a therapy response predictor and could be a future therapeutic target for ovarian cancer. We have developed a method to profile genome wide methylation. 71 ovarian tumor samples and 9 normal tissue samples from individuals were analyzed for CpG methylation. Some of these regions were validated for their methylation as a proof of principle for the method. Kamalakaran S., et. al. Mol Oncol. 2011;5:77-92 (PMID: 21169070).
Project description:Epithelial ovarian cancer is the leading cause of death from gynecological malignancies. Currently platinum-based chemotherapy, coupled with a taxane based drug is the primary treatment for ovarian cancer. Approximately 25% of patients either present with or rapidly develop resistance to platinum based chemotherapy and all recurrent tumors ultimately become resistant. Epigenetic modifications have been associated with tumor formation and progression and may contribute to therapy response. We performed a methylation screen on a set of tumors and have found a number of genes and family members differentially methylated between resistant patients and sensitive patients. Here we show that loss of expression of CHD3, a member of the Mi-2/NuRD complex, causes increased resistance to platinum chemotherapy drugs. Additionally, ovarian cell lines transcriptionally silenced for CHD3 are more invasive, have migratory ability, and display a transformed epithelial to mesenchymal (EMT) phenotype. Taken together, we provide the first evidence of a role for CHD3 as an important epigenetic regulator of chemoresistance in ovarian cancer and hypothesize EMT as one of the underlying mechanisms. Furthermore, CHD3 expression might represent a therapy response predictor and could be a future therapeutic target for ovarian cancer.
Project description:Platinum resistance is a major drawback in the treatment of ovarian cancer. Evidence suggests that microRNAs are key players in the initiation, progression, and drug resistance of cancer cells. However, the precise miRNAs dysregulated and contributing to platinum resistance in ovarian cancer cells have not been fully elucidated. Here, we conducted a miRNA expression profiling of cisplatin-sensitive (A2780) and cisplatin-resistant (CP20 and CIS) ovarian cancer cells to identify potential miRNAs involved in platinum resistance.
Project description:Platinum resistance is a clinical challenge in ovarian cancer. Platinating agents induce DNA damage which activate Mre11 nuclease directed DNA damage signalling and response (DDR). Upregulation of DDR may promote chemotherapy resistance. Here we have comprehensively evaluated Mre11 in epithelial ovarian cancers. In clinical cohort that received platinum- based chemotherapy (n=331), Mre11 protein overexpression was associated with aggressive phenotype and poor progression free survival (PFS) (p=0.002). In the ovarian cancer genome atlas (TCGA) cohort (n=498), Mre11 gene amplification was observed in a subset of serous tumours (5%) which correlated highly with Mre11 mRNA levels (p<0.0001). Altered Mre11 levels was linked with genome wide alterations that can influence platinum sensitivity. At the transcriptomic level (n=1259), Mre11 overexpression was associated with poor PFS (p=0.003). ROC analysis showed an area under the curve (AUC) of 0.642 for response to platinum-based chemotherapy. Pre-clinically, Mre11 depletion by gene knock down or blockade by small molecule inhibitor (Mirin) reversed platinum resistance in ovarian cancer cells and in 3D spheroid models. Importantly, Mre11 inhibition was synthetically lethal in platinum sensitive XRCC1 deficient ovarian cancer cells and 3D-spheroids. Selective cytotoxicity was associated with DNA double strand break (DSB) accumulation, S-phase cell cycle arrest and increased apoptosis. We conclude that pharmaceutical development of Mre11 inhibitors is a viable clinical strategy for platinum sensitization and synthetic lethality in ovarian cancer.
Project description:Platinum resistance is a clinical challenge in ovarian cancer. Platinating agents induce DNA damage which activate Mre11 nuclease directed DNA damage signalling and response (DDR). Upregulation of DDR may promote chemotherapy resistance. Here we have comprehensively evaluated Mre11 in epithelial ovarian cancers. In clinical cohort that received platinum- based chemotherapy (n=331), Mre11 protein overexpression was associated with aggressive phenotype and poor progression free survival (PFS) (p=0.002). In the ovarian cancer genome atlas (TCGA) cohort (n=498), Mre11 gene amplification was observed in a subset of serous tumours (5%) which correlated highly with Mre11 mRNA levels (p<0.0001). Altered Mre11 levels was linked with genome wide alterations that can influence platinum sensitivity. At the transcriptomic level (n=1259), Mre11 overexpression was associated with poor PFS (p=0.003). ROC analysis showed an area under the curve (AUC) of 0.642 for response to platinum-based chemotherapy. Pre-clinically, Mre11 depletion by gene knock down or blockade by small molecule inhibitor (Mirin) reversed platinum resistance in ovarian cancer cells and in 3D spheroid models. Importantly, Mre11 inhibition was synthetically lethal in platinum sensitive XRCC1 deficient ovarian cancer cells and 3D-spheroids. Selective cytotoxicity was associated with DNA double strand break (DSB) accumulation, S-phase cell cycle arrest and increased apoptosis. We conclude that pharmaceutical development of Mre11 inhibitors is a viable clinical strategy for platinum sensitization and synthetic lethality in ovarian cancer.
Project description:Ovarian cancer (OC) is the leading cause of death from gynecologic malignancies. The most difficult issue in the treatment of ovarian cancer is the eventual development of platinum resistance. Accumulating studies have shown that circRNAs are abnormally aberrantly expressed in tumors and play critical roles in tumor growth, metastasis, stemness and resistance to therapy.To identify circRNAs that play crucial roles in maintaining the platinum resistance of ovarian cacner, we performed RNA-seq analysis in platinum-resistant(n=9) and -sensitive(n=10) ovarian cacner tissues. Candidate genes were identified by bioinformatic analysis and literature review.
Project description:Changes in chromatin organization are associated with resistance to anti-cancer drugs, such as platinum-based chemotherapy used as the primary treatment of ovarian cancer. We have examined the genomic distribution of chromatin accessibility changes, and relationship to gene expression changes, occurring during acquisition of resistance in vivo of high grade serous ovarian cancer (HGSOC) patients and whether this associates with genomic DNA damage distribution. Using matched chemo-sensitive and chemo-resistant ovarian cell lines isolated from HGSOC patients before and following acquisition of clinical resistance to platinum-based chemotherapy, we have examined the relationship between chromatin accessibility by ATAC-seq, platinum-DNA adduct distribution by Pt-Exo-seq and gene expression by RNA-seq. We have correlated chromatin changes between the lines at gene promoters, CpG islands, enhancer sequences and other genomic regions with changes in gene expression and platinum-DNA adduct distribution. We observe chromatin conformation differences following acquisition of platinum-resistance, with the HGSOC resistant lines clustering together, separately from their respective sensitive counterparts. Resistant lines show altered chromatin accessibility at intergenic regions, but less so at gene promoters. Super-enhancers, as defined by clusters of cis-regulatory elements, at these intergenic regions show chromatin changes that are associated with altered expression of linked genes, with enrichment for genes involved in the Fanconi anemia/BRCA DNA damage response pathway. Genome-wide distribution of platinum adducts associates with the chromatin changes and distinguish sensitive from resistant lines. Regions incurring fewer platinum-adducts showed a significant reduction in accessibility the resistant HGSOC cell line PEO4 compared to the sensitive PEO1 counterpart. Surprisingly, regions showing increased damage in PEO4 had an even greater reduction in accessibility. In the resistant line, we observe fewer adducts around gene promoters and more adducts at intergenic regions. In cell lines derived from patients following acquisition of clinical resistance to platinum-based chemotherapy, chromatin changes at super-enhancers correlate with gene expression changes in DNA repair pathways known to influence platinum sensitivity. Although cisplatin is a relatively non-specific DNA damaging agent, there are consistent differences in distribution of adducts between the matched sensitive and resistant ovarian cell lines, which is independent of the overall level of adducts formed.
Project description:Changes in chromatin organization are associated with resistance to anti-cancer drugs, such as platinum-based chemotherapy used as the primary treatment of ovarian cancer. We have examined the genomic distribution of chromatin accessibility changes, and relationship to gene expression changes, occurring during acquisition of resistance in vivo of high grade serous ovarian cancer (HGSOC) patients and whether this associates with genomic DNA damage distribution. Using matched chemo-sensitive and chemo-resistant ovarian cell lines isolated from HGSOC patients before and following acquisition of clinical resistance to platinum-based chemotherapy, we have examined the relationship between chromatin accessibility by ATAC-seq, platinum-DNA adduct distribution by Pt-Exo-seq and gene expression by RNA-seq. We have correlated chromatin changes between the lines at gene promoters, CpG islands, enhancer sequences and other genomic regions with changes in gene expression and platinum-DNA adduct distribution. We observe chromatin conformation differences following acquisition of platinum-resistance, with the HGSOC resistant lines clustering together, separately from their respective sensitive counterparts. Resistant lines show altered chromatin accessibility at intergenic regions, but less so at gene promoters. Super-enhancers, as defined by clusters of cis-regulatory elements, at these intergenic regions show chromatin changes that are associated with altered expression of linked genes, with enrichment for genes involved in the Fanconi anemia/BRCA DNA damage response pathway. Genome-wide distribution of platinum adducts associates with the chromatin changes and distinguish sensitive from resistant lines. Regions incurring fewer platinum-adducts showed a significant reduction in accessibility the resistant HGSOC cell line PEO4 compared to the sensitive PEO1 counterpart. Surprisingly, regions showing increased damage in PEO4 had an even greater reduction in accessibility. In the resistant line, we observe fewer adducts around gene promoters and more adducts at intergenic regions. In cell lines derived from patients following acquisition of clinical resistance to platinum-based chemotherapy, chromatin changes at super-enhancers correlate with gene expression changes in DNA repair pathways known to influence platinum sensitivity. Although cisplatin is a relatively non-specific DNA damaging agent, there are consistent differences in distribution of adducts between the matched sensitive and resistant ovarian cell lines, which is independent of the overall level of adducts formed.
Project description:Changes in chromatin organization are associated with resistance to anti-cancer drugs, such as platinum-based chemotherapy used as the primary treatment of ovarian cancer. We have examined the genomic distribution of chromatin accessibility changes, and relationship to gene expression changes, occurring during acquisition of resistance in vivo of high grade serous ovarian cancer (HGSOC) patients and whether this associates with genomic DNA damage distribution. Using matched chemo-sensitive and chemo-resistant ovarian cell lines isolated from HGSOC patients before and following acquisition of clinical resistance to platinum-based chemotherapy, we have examined the relationship between chromatin accessibility by ATAC-seq, platinum-DNA adduct distribution by Pt-Exo-seq and gene expression by RNA-seq. We have correlated chromatin changes between the lines at gene promoters, CpG islands, enhancer sequences and other genomic regions with changes in gene expression and platinum-DNA adduct distribution. We observe chromatin conformation differences following acquisition of platinum-resistance, with the HGSOC resistant lines clustering together, separately from their respective sensitive counterparts. Resistant lines show altered chromatin accessibility at intergenic regions, but less so at gene promoters. Super-enhancers, as defined by clusters of cis-regulatory elements, at these intergenic regions show chromatin changes that are associated with altered expression of linked genes, with enrichment for genes involved in the Fanconi anemia/BRCA DNA damage response pathway. Genome-wide distribution of platinum adducts associates with the chromatin changes and distinguish sensitive from resistant lines. Regions incurring fewer platinum-adducts showed a significant reduction in accessibility the resistant HGSOC cell line PEO4 compared to the sensitive PEO1 counterpart. Surprisingly, regions showing increased damage in PEO4 had an even greater reduction in accessibility. In the resistant line, we observe fewer adducts around gene promoters and more adducts at intergenic regions. In cell lines derived from patients following acquisition of clinical resistance to platinum-based chemotherapy, chromatin changes at super-enhancers correlate with gene expression changes in DNA repair pathways known to influence platinum sensitivity. Although cisplatin is a relatively non-specific DNA damaging agent, there are consistent differences in distribution of adducts between the matched sensitive and resistant ovarian cell lines, which is independent of the overall level of adducts formed.
Project description:Platinum compounds display clinical activity against a wide variety of solid tumors. However, resistance to these agents is a major limitation in cancer therapy. Reduced platinum uptake and increased platinum export are examples of resistance mechanisms that limit the extent of DNA damage. Here, we report the discovery and characterization of the role of ATP11B, a P-type ATPase membrane protein, in cisplatin resistance. ATP11B gene silencing restored the sensitivity of ovarian cancer cell lines to cisplatin in vitro. Combined therapy of cisplatin and ATP11B-siRNA significantly decreased cancer growth in mice bearing ovarian tumors derived from cisplatin-sensitive and -resistant cells. In vitro mechanistic studies on cellular platinum content and cisplatin efflux-kinetics indicated that ATP11B enhances the export of cisplatin from cells. The co-localization of ATP11B with fluorescent cisplatin and with vesicular trafficking proteins such as syntaxin-6 (STX6) and vesicular associated membrane protein 4 (VAMP4) strongly suggests that ATP11B contributes to secretory vesicular transport of cisplatin from Golgi to plasma membrane. In conclusion, silencing ATP11B expression might be a therapeutic strategy to overcome cisplatin resistance. We performed the transfection of control-siRNA and ATP11B-siRNA to both cisplatin-sensitive A2780-PAR and cisplatin-resistant A2780-CP20 cells respectively.