Project description:Environmental and simulation facility conditions can modulate a behavioral-driven altered gravity response of Drosophila imagoes transcriptome
Project description:Genome-wide transcriptional profiling shows that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene expression. However, simulation experiments on ground, without space constraints, show weaker effects than space environment. A global and integrative analysis using the “gene expression dynamics inspector” (GEDI) self-organizing maps, reveals a subtle response of the transcriptome using different populations and microgravity and hypergravity simulation devices. These results suggest that, in addition to behavioural responses that can be detected also at the gene expression level, the transcriptome is finely tuned to normal gravity. The alteration of this constant parameter on Earth can have effects on gene expression that depends both on the environmental conditions and the ground based facility used to compensate the gravity vector. Alternative and commons effects of mechanical facilities, like the Random Positioning Machine and a centrifuge, and strong magnetic field ones, like a cryogenically cooled superconductive magnet, are discussed.
Project description:Genome-wide transcriptional profiling showed that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene expression intimately linked to imposed spaceflight-related environmental constrains during Drosophila metamorphosis. However, simulation experiments on ground testing space-related environmental constraints, show differential responses. Curiously, although particular genes are not common in the different experiments, the same GO groups including a large multigene family related with behavior, stress response and organogenesis are over represented in them. A global and integrative analysis using the gene expression dynamics inspector (GEDI) self-organizing maps, reveals different degrees in the responses of the transcriptome when using different environmental conditions or microgravity/hypergravity simulation devices These results suggest that the transcriptome is finely tuned to normal gravity. In regular environmental conditions the alteration of this constant parameter on Earth can have mild effects on gene expression but when environmental conditions are far from optimal, the gene expression is much more intense and consistent effects.
Project description:Genome-wide transcriptional profiling shows that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene expression. However, simulation experiments on ground, without space constraints, show weaker effects than space environment. A global and integrative analysis using the M-bM-^@M-^\gene expression dynamics inspectorM-bM-^@M-^] (GEDI) self-organizing maps, reveals a subtle response of the transcriptome using different populations and microgravity and hypergravity simulation devices. These results suggest that, in addition to behavioural responses that can be detected also at the gene expression level, the transcriptome is finely tuned to normal gravity. The alteration of this constant parameter on Earth can have effects on gene expression that depends both on the environmental conditions and the ground based facility used to compensate the gravity vector. Alternative and commons effects of mechanical facilities, like the Random Positioning Machine and a centrifuge, and strong magnetic field ones, like a cryogenically cooled superconductive magnet, are discussed. We compare the effects over the gene expression profile of different gender/age Drosophila imagoes in 3-4 days-long experiments under altered gravity conditions into three GBF ("Ground Based Facilities" for micro/hyper- gravity simulation) using whole genome microarray platforms. Descriptions of different GBFs ("treatments"): LDC means "Large Diameter Centrifuge". Samples can be placed under three conditions: inside LDC (at certain g level), at the LDC rotational control and at external 1g control (outside the LDC). RPM means "Random Positioning Machine". Samples can be placed under two conditions: inside RPM (at nearly 0g, Microgravity level) and at external 1g control (outside the RPM). At the magnet, means INSIDE the Magnetic levitator (another GBF). Samples can be placed under four conditions: inside Magnet 0g* (at microgravity with magnetic field), inside Magnet at 1g* (internal control with magnetic field) or inside the magnet 2g* (at hypergravity with magnetic field) and at external 1g control (outside the magnet)
Project description:R. rubrum S1H inoculated on solid minimal media was sent to the ISS in September 2006 (BASE-A experiment). After 10 days flight, R. rubrum cultures returned back to Earth. These cultures were then subjected to both transcriptomic and proteomic analysis and compared with the corresponding ground control. Whole-genome oligonucleotide microarray and high throughput proteomics, which offer the possibility to survey respectively the global transcriptional and translational response of an organism, were used to test the effect of space flight. Moreover, in an effort to identify a specific stress response of R. rubrum to space flight, ground simulation of space ionizing radiation and space gravity were performed under identical culture setup and growth conditions encountered during the actual space journey. This study is unique in combining the results from an actual space experiment with the corresponding space ionizing radiation and modeled microgravity ground simulations, which lead to a more solid dissection of the different factors contribution acting in space flight conditions. Total RNA was extracted from R. rubrum S1H grown after 10 days in space flight or after 10 days in simulated ionizing radiation or simulated microgravity. Each microarray slide contained 3 technical repeats.
Project description:R. rubrum S1H inoculated on solid agar rich media was sent to the ISS in October 2003 (MESSAGE-part 2 experiment). After 10 days flight, R. rubrum cultures returned back to Earth. These cultures were then subjected to both transcriptomic and proteomic analysis and compared with the corresponding ground control. Whole-genome oligonucleotide microarray and high throughput proteomics, which offer the possibility to survey respectively the global transcriptional and translational response of an organism, were used to test the effect of space flight. Moreover, in an effort to identify a specific stress response of R. rubrum to space flight, ground simulation of space ionizing radiation and space gravity were performed under identical culture setup and growth conditions encountered during the actual space journey. This study is unique in combining the results from an actual space experiment with the corresponding space ionizing radiation and modeled microgravity ground simulations, which lead to a more solid dissection of the different factors contribution acting in space flight conditions. Total RNA was extracted from R. rubrum S1H grown after 10 days in space flight or after 10 days in simulated ionizing radiation or simulated microgravity. Each microarray slide contained 3 technical repeats.
Project description:The coupling of metabolism to the posttranslational modification of proteins has been suggested to play an important role in the modulation of protein function in response to physiological variation. This interplay could potentially establish feedback loops that buffer extreme environmental challenges. Protein acetylation is one such posttranslational protein modification that is tightly coupled to metabolic variation. Here, we show that the acetyltransferase chameau (chm), which affects life span in Drosophila, is also involved in the regulation of metabolism upon environmental cues. While chm haploinsufficiency increases life span in flies that have sufficient access to nutrients, it reduces their ability to cope with starvation. We hypothesize the starvation susceptibility in mutant flies is caused by their reduced ability to modulate energy homeostasis. Interestingly, this effect is highly dependent on the ambient temperature, suggesting that it evolved to allow organisms to adapt to a wider range of environmental conditions by modulating their energy metabolism.
Project description:Physical forces greatly influence the growth and function of an organism. Altered gravity can perturb normal development and induce corresponding changes in gene expression. Understanding this relationship between the physical and biological realms is important for NASA’s space travel goals. We use combined RNA-Seq and qRT-PCR to profile changes in early Drosophila melanogaster pupae exposed to chronic hypergravity (3 g, three times Earth’s gravity) to highlight gravity-dependent pathways and gene products. Robust transcriptional response was evident among the pupae developed in a hypergravity environment compared to control. 1,513 genes showed significantly (p < 0.05) altered gene expression in the 3 g samples. These findings were supported with qRT-PCR data. Major biological processes affected include ion transport, redox homeostasis, immune and humoral stress response, proteolysis, and cuticle development.
Project description:R. rubrum S1H inoculated on solid minimal media was sent to the ISS in September 2006 (BASE-A experiment). After 10 days flight, R. rubrum cultures returned back to Earth. These cultures were then subjected to both transcriptomic and proteomic analysis and compared with the corresponding ground control. Whole-genome oligonucleotide microarray and high throughput proteomics, which offer the possibility to survey respectively the global transcriptional and translational response of an organism, were used to test the effect of space flight. Moreover, in an effort to identify a specific stress response of R. rubrum to space flight, ground simulation of space ionizing radiation and space gravity were performed under identical culture setup and growth conditions encountered during the actual space journey. This study is unique in combining the results from an actual space experiment with the corresponding space ionizing radiation and modeled microgravity ground simulations, which lead to a more solid dissection of the different factors contribution acting in space flight conditions.