Project description:The aim of this study is to determine copy number variations in the multiple myeloma patients, which were positive for BCL1/JH t(11;14)(q13;q32) translocation. Identification of common chromosomal aberrations representing the t(11;14)(q13;q32) subtype is possible by comparing the microarray data across all the samples under studied. Eight multiple myeloma samples were analyzed. Each sample was compared against normal control (match with patient's race and gender), which was pooled from ten healthy individuals.
Project description:The aim of this study is to determine copy number variations in the multiple myeloma patients, which were positive for BCL1/JH t(11;14)(q13;q32) translocation. Identification of common chromosomal aberrations representing the t(11;14)(q13;q32) subtype is possible by comparing the microarray data across all the samples under studied.
Project description:A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide dosage effect on gene and microRNA expression This SuperSeries is composed of the following subset Series: GSE13591: Integrated genomics approach to detect allelic imbalances in multiple myeloma GSE16121: Integrated genomics approach to detect allelic imbalances in multiple myeloma, SNP data Refer to individual Series
Project description:A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide dosage effect on gene and microRNA expression Multiple myeloma (MM) is characterized by marked genomic instability. Beyond structural rearrangements, a relevant role in its biology is represented by allelic imbalances leading to significant variations in ploidy status. To better elucidate the genomic complexity of MM, we analyzed a panel of 45 patients using combined FISH and microarray approaches. Using a self-developed procedure to infer exact local copy numbers for each sample, we identified a significant fraction of patients showing marked aneuploidy. A conventional clustering analysis showed that aneuploidy, chromosome 1 alterations, hyperdiploidy and recursive deletions at 1p and chromosomes 13, 14 and 22 were the main aberrations driving samples grouping. Then, we integrated mapping information with gene and microRNAs expression profiles: a multiclass analysis of the identified clusters showed a marked gene-dosage effect, particularly concerning 1q transcripts, also confirmed by correlating gene expression levels and local copy number alterations. A wide dosage effect affected also microRNAs, indicating that structural abnormalities in MM closely reflect in their expression imbalances. Finally, we identified several loci in which genes and microRNAs expression correlated with loss-of-heterozygosity occurrence. Our results provide insights into the composite network linking genome structure and gene/microRNA transcriptional features in MM. Keywords: Integrated genomics approach based on SNP microarray and FISH procedures to detect allelic imbalances in multiple myeloma.
Project description:Multiple myeloma (MM) is characterized by marked genomic instability. Beyond structural rearrangements, a relevant role in its biology is represented by allelic imbalances leading to significant variations in ploidy status. To better elucidate the genomic complexity of MM, we analyzed a panel of 45 patients using combined FISH and microarray approaches. Using a self-developed procedure to infer exact local copy numbers for each sample, we identified a significant fraction of patients showing marked aneuploidy. A conventional clustering analysis showed that aneuploidy, chromosome 1 alterations, hyperdiploidy and recursive deletions at 1p and chromosomes 13, 14 and 22 were the main aberrations driving samples grouping. Then, we integrated mapping information with gene and microRNAs expression profiles: a multiclass analysis of the identified clusters showed a marked gene-dosage effect, particularly concerning 1q transcripts, also confirmed by correlating gene expression levels and local copy number alterations. A wide dosage effect affected also microRNAs, indicating that structural abnormalities in MM closely reflect in their expression imbalances. Finally, we identified several loci in which genes and microRNAs expression correlated with loss-of-heterozygosity occurrence. Our results provide insights into the composite network linking genome structure and gene/microRNA transcriptional features in MM. Keywords: Integrated genomics approach based on SNP microarray and FISH procedures to detect allelic imbalances in multiple myeloma.
Project description:A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide dosage effect on gene and microRNA expression Multiple myeloma (MM) is characterized by marked genomic instability. Beyond structural rearrangements, a relevant role in its biology is represented by allelic imbalances leading to significant variations in ploidy status. To better elucidate the genomic complexity of MM, we analyzed a panel of 45 patients using combined FISH and microarray approaches. Using a self-developed procedure to infer exact local copy numbers for each sample, we identified a significant fraction of patients showing marked aneuploidy. A conventional clustering analysis showed that aneuploidy, chromosome 1 alterations, hyperdiploidy and recursive deletions at 1p and chromosomes 13, 14 and 22 were the main aberrations driving samples grouping. Then, we integrated mapping information with gene and microRNAs expression profiles: a multiclass analysis of the identified clusters showed a marked gene-dosage effect, particularly concerning 1q transcripts, also confirmed by correlating gene expression levels and local copy number alterations. A wide dosage effect affected also microRNAs, indicating that structural abnormalities in MM closely reflect in their expression imbalances. Finally, we identified several loci in which genes and microRNAs expression correlated with loss-of-heterozygosity occurrence. Our results provide insights into the composite network linking genome structure and gene/microRNA transcriptional features in MM. Keywords: Integrated genomics approach based on SNP microarray and FISH procedures to detect allelic imbalances in multiple myeloma. Pathological bone marrow specimens from 41 MM and four plasma cell leukemia (PCL) patients at diagnosis. 250 nanograms of genomic DNA was processed and, in accordance with the manufacturer's protocols, 40 micrograms of fragmented biotin-labelled DNA were hybridized on GeneChip Human Mapping 50K XbaI Arrays (Affymetrix Inc.). The arrays were scanned using the GeneChip Scanner 3000 7G. The images were acquired using Affymetrix GeneChip® Operating Software (GCOS version 1.4). Copy number values for individual SNPs were extracted and converted from CEL files into signal intensities using GTYPE 4.1 and Affymetrix Copy Number Analysis Tool (CNAT 4.0.1) softwares. Genomic Smoothing analysis was performed by using the smoothing window of 0 Mb, and inferred copy number states were derived from a Hidden Markov Model (HMM) based algorithm implemented in CNAT 4.0.1. Circular Binary Segmentation (Ohlsen et al., 2004) was applied using DNAcopy package for R Bioconductor on raw data. FBN procedure was finally applied to infer exact local copy number as described in the mentioned Reference.
Project description:Immunoglobulin light chain (AL) amyloidosis is characterized by deposition of abnormal amyloid fibrils in multiple organs impairing their function. CD138-purified plasma cells producing these fibrils are investigated regarding chromosomal alterations by interphase fluorescence in situ hybridization (iFISH) using a multiple myeloma specific probe set for the IgH translocations as well as recurrent numerical aberrations. Aberrations genuine to AL amyloidosis cannot be detected due to the inherent limitation of this probe panel to known loci. We analyzed 118 AL amyloidosis patients by high-density copy number array to quantitatively detect genome-wide chromosomal imbalances. Most prevalent gains affected chromosomes 1q (37%), 9 (24%), 11q (24%), and 19 (16%). The most frequent deletion was monosomy 13 (28%) followed by partial deletions on 14q (21%), 16q (14%), and 13q (12%). The results were analyzed with respect to cytogenetic subgroups. In 88% of patients with translocation t(11;14) and concomitant gain of 11q22.3/11q23 detected by iFISH, the latter aberration was not due to trisomy of chromosome 11 but part of the unbalanced translocation der(14)t(11;14)(q13;q32) with breakpoint in the CCND1/MYEOV gene region. Partial loss of chromosomes 14q and 16q were significantly associated to patients with gain 1q. Our iFISH probe set is highly concordant with copy number results as it detects the most common cytogenetic aberrations present in AL amyloidosis. Beyond that, the probe panel is also the method of choice to detect translocations involving the IgH locus. In contrast to the results of our iFISH panel the frequency of hyperdiploidy detected by copy number array analysis is higher.