Project description:N-myc downstream-regulated gene 1 (*NDRG1*) is induced by cellular stress such as hypoxia and DNA damage, and in humans, germ line mutations cause Charcot-Marie-Tooth disease. However, the roles of NDRG1 in the cell are not fully understood. Previously, NDRG1 was shown to mediate doxorubicin resistance under hypoxia, suggesting a role for NDRG1 in cell survival under these conditions. We found decreased apoptosis in doxorubicin-treated cells expressing NDRG1 shRNAs under normoxia, demonstrating a requirement for NDRG1 in apoptosis in breast epithelial cells under normal oxygen pressure. We further compared expression profiles in human breast epithelial cells ectopically over-expressing NDRG1 with cells expressing NDRG1 shRNAs in order to identify biological pathways where NDRG1 is involved. The results suggest that NDRG1 may have roles connected to vesicle transport. The previously reported roles of NDRG1 in apoptosis, myelin sheet maintenance, enhanced exocytosis in mast cells and in cellular responses to hypoxia, heavy metals, and androgen may all converge by NDRG1 having a role linked to vesicle transport. Two condition design, MCF-7 and ZR-75-1 cell lines grown in hypoxia compared to cells grown at normoxia.
Project description:N-myc downstream-regulated gene 1 (*NDRG1*) is induced by cellular stress such as hypoxia and DNA damage, and in humans, germ line mutations cause Charcot-Marie-Tooth disease. However, the roles of NDRG1 in the cell are not fully understood. Previously, NDRG1 was shown to mediate doxorubicin resistance under hypoxia, suggesting a role for NDRG1 in cell survival under these conditions. We found decreased apoptosis in doxorubicin-treated cells expressing NDRG1 shRNAs under normoxia, demonstrating a requirement for NDRG1 in apoptosis in breast epithelial cells under normal oxygen pressure. We further compared expression profiles in human breast epithelial cells ectopically over-expressing NDRG1 with cells expressing NDRG1 shRNAs in order to identify biological pathways where NDRG1 is involved. The results suggest that NDRG1 may have roles connected to vesicle transport. The previously reported roles of NDRG1 in apoptosis, myelin sheet maintenance, enhanced exocytosis in mast cells and in cellular responses to hypoxia, heavy metals, and androgen may all converge by NDRG1 having a role linked to vesicle transport.
Project description:N-myc downstream-regulated gene 1 (*NDRG1*) is induced by cellular stress such as hypoxia and DNA damage, and in humans, germ line mutations cause Charcot-Marie-Tooth disease. However, the roles of NDRG1 in the cell are not fully understood. Previously, NDRG1 was shown to mediate doxorubicin resistance under hypoxia, suggesting a role for NDRG1 in cell survival under these conditions. We found decreased apoptosis in doxorubicin-treated cells expressing NDRG1 shRNAs under normoxia, demonstrating a requirement for NDRG1 in apoptosis in breast epithelial cells under normal oxygen pressure. We further compared expression profiles in human breast epithelial cells ectopically over-expressing NDRG1 with cells expressing NDRG1 shRNAs in order to identify biological pathways where NDRG1 is involved. The results suggest that NDRG1 may have roles connected to vesicle transport. The previously reported roles of NDRG1 in apoptosis, myelin sheet maintenance, enhanced exocytosis in mast cells and in cellular responses to hypoxia, heavy metals, and androgen may all converge by NDRG1 having a role linked to vesicle transport.
Project description:N-myc downstream-regulated gene 1 (*NDRG1*) is induced by cellular stress such as hypoxia and DNA damage, and in humans, germ line mutations cause Charcot-Marie-Tooth disease. However, the roles of NDRG1 in the cell are not fully understood. Previously, NDRG1 was shown to mediate doxorubicin resistance under hypoxia, suggesting a role for NDRG1 in cell survival under these conditions. We found decreased apoptosis in doxorubicin-treated cells expressing NDRG1 shRNAs under normoxia, demonstrating a requirement for NDRG1 in apoptosis in breast epithelial cells under normal oxygen pressure. We further compared expression profiles in human breast epithelial cells ectopically over-expressing NDRG1 with cells expressing NDRG1 shRNAs in order to identify biological pathways where NDRG1 is involved. The results suggest that NDRG1 may have roles connected to vesicle transport. The previously reported roles of NDRG1 in apoptosis, myelin sheet maintenance, enhanced exocytosis in mast cells and in cellular responses to hypoxia, heavy metals, and androgen may all converge by NDRG1 having a role linked to vesicle transport. SUM102 and ME16C2 stably transduced with siRNA against NDRG1 compared with empty vector control ZR-75-1 stably transduced with NDRG1 overexpression construct compared with empty vector control Two condition design
Project description:MK-801, a non-competitive NMDA receptor (NMDAR) antagonist, disturbs NMDAR function in rodents and induces psychological and behavioral changes similar to schizophrenia(SCZ). However, the effects of MK-801 treatment on gene expression in prefrontal cortex (PFC) are largely unknown. We have established MK-801 animal models to explore the etiology and pathophysiology of schizophrenia. Transcriptome analysis of the prefrontal cortex reveals that the differentially expressed genes mainly aggregate in chemical synaptic transmission and immune system process. Gene association patterns which are involved in synaptic vesicle cycle and mitochondrial electron transport chain have also been altered. Together, these observations underscore that dysfunction in glutamatergic synaptic vesicle cycle and mitochondrial electron transport chain has an impact on the pathogenesis of SCZ.
Project description:BACKGROUND: Prostate cancer is the most frequently diagnosed cancer among men in the United States. In contrast, cancer of the seminal vesicle is exceedingly rare, despite that the prostate and seminal vesicle share similar histology, secretory function, androgen dependency, blood supply, and (in part) embryonic origin. We hypothesized that gene-expression differences between prostate and seminal vesicle might inform mechanisms underlying the higher incidence of prostate cancer. METHODS: Whole-genome DNA microarrays were used to profile gene expression of 11 normal prostate and 7 seminal vesicle specimens (including 6 matched pairs) obtained from radical prostatectomy. Supervised analysis was used to identify genes differentially expressed between normal prostate and seminal vesicle, and this list was then cross-referenced to genes differentially expressed between normal and cancerous prostate. Expression patterns of selected genes were confirmed by immunohistochemistry using a tissue microarray. We identified 32 genes that displayed a highly statistically-significant expression pattern with highest levels in seminal vesicle, lower levels in normal prostate, and lowest levels in prostate cancer. Among these genes was the known candidate prostate tumor suppressor GSTP1 (involved in xenobiotic detoxification). The expression pattern of GSTP1 and four other genes, ABCG2 (xenobiotic transport), CRABP2 (retinoic acid signaling), GATA3 (lineage-specific transcription) and SLPI (immune response), was confirmed by immunohistochemistry. CONCLUSIONS: Our findings identify candidate prostate cancer genes whose reduced expression in prostate (compared to seminal vesicle) may be permissive to prostate cancer initiation. Such genes and their pathways may inform mechanisms of prostate carcinogenesis, and suggest new opportunities for prostate cancer prevention. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Disease State: normal prostate vs normal seminal vesicle sample Individual Keywords: Logical Set cDNA microarrays from the Stanford Functional Genomics Facility were used for expression profiling of 11 normal prostate and 7 seminal vesicle specimens (6 of which were matched pairs), against a universal RNA reference. Extracted expression ratios were normalized by array then mean centered by gene, and expression differences between normal prostate and seminal vesicle identified using Significance Analysis of Microarrays (SAM).
Project description:SKBR3 cells expressing NDRG1 shRNA1 or vector control were harvested by trypsinization and total RNA was extracted. Silencing NDRG1 reduces cell proliferation rates, causing lipid metabolism dysfunction including increased fatty acid incorporation into neutral lipids and lipid droplets. global changes in transcriptome due to NDRG1 silencing were observed
Project description:BACKGROUND: Prostate cancer is the most frequently diagnosed cancer among men in the United States. In contrast, cancer of the seminal vesicle is exceedingly rare, despite that the prostate and seminal vesicle share similar histology, secretory function, androgen dependency, blood supply, and (in part) embryonic origin. We hypothesized that gene-expression differences between prostate and seminal vesicle might inform mechanisms underlying the higher incidence of prostate cancer. METHODS: Whole-genome DNA microarrays were used to profile gene expression of 11 normal prostate and 7 seminal vesicle specimens (including 6 matched pairs) obtained from radical prostatectomy. Supervised analysis was used to identify genes differentially expressed between normal prostate and seminal vesicle, and this list was then cross-referenced to genes differentially expressed between normal and cancerous prostate. Expression patterns of selected genes were confirmed by immunohistochemistry using a tissue microarray. We identified 32 genes that displayed a highly statistically-significant expression pattern with highest levels in seminal vesicle, lower levels in normal prostate, and lowest levels in prostate cancer. Among these genes was the known candidate prostate tumor suppressor GSTP1 (involved in xenobiotic detoxification). The expression pattern of GSTP1 and four other genes, ABCG2 (xenobiotic transport), CRABP2 (retinoic acid signaling), GATA3 (lineage-specific transcription) and SLPI (immune response), was confirmed by immunohistochemistry. CONCLUSIONS: Our findings identify candidate prostate cancer genes whose reduced expression in prostate (compared to seminal vesicle) may be permissive to prostate cancer initiation. Such genes and their pathways may inform mechanisms of prostate carcinogenesis, and suggest new opportunities for prostate cancer prevention. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Disease State: normal prostate vs normal seminal vesicle sample Individual Keywords: Logical Set
Project description:Host cells harbor various intrinsic mechanisms to restrict viral infections as a first line of antiviral defense. Viruses have evolved various countermeasures against these antiviral mechanisms. Here we show that N-Myc Downstream-Reguated Gene 1 (NDRG1) limits productive HCV infection by inhibiting viral assembly. Interestingly, HCV infection down-regulates NDRG1 protein and mRNA expression. Loss of NDRG1 increases the size and number of lipid droplets, which are the sites of HCV assembly. HCV suppresses NDRG1 expression by up-regulating MYC, which directly inhibits the transcription of NDRG1. Up-regulation of MYC also leads to reduced expression of NDRG1-specific kinase SGK1, resulting in markedly diminished phosphorylation of NDRG1. Knockdown of MYC during HCV infection rescues NDRG1 expression and phosphorylation, suggesting that MYC regulates NDRG1 at both transcriptional and post-translational levels. Overall, our results suggest that NDRG1 restricts HCV assembly by limiting lipid droplet formation. HCV counteracts this intrinsic antiviral mechanism by down-regulating NDRG1 via a MYC-dependent mechanism.
Project description:NDRG1 functions as a metastasis suppressor in pancreatic and other cancers. To determine the molecular function of NDRG1 in MIAPaCa-2 pancreatic cancer cells, we performed a whole genome gene array analysis on these cells stably transfected with NDRG1 when compared to empty vector-transfected controls. The differentially expressed genes indetified in this microarray may represent potential molecular targets of NDRG1 in pancreatic cancer.