Project description:OBJECTIVE: Novel biomarkers of disease progression after type 1 diabetes onset are needed. RESEARCH DESIGN AND METHODS: We profiled peripheral blood (PB) monocyte gene expression in 6 healthy subjects and 16 children with type 1 diabetes diagnosed ~3 months previously, and analyzed clinical features from diagnosis to 1 year. RESULTS: Monocyte expression profiles clustered into two distinct subgroups, representing mild and severe deviation from healthy controls, along the same continuum. Patients with strongly divergent monocyte gene expression had significantly higher insulin dose-adjusted HbA1c levels during the first year, compared to patients with mild deviation. The diabetes-associated expression signature identified multiple perturbations in pathways controlling cellular metabolism and survival, including endoplasmic reticulum and oxidative stress (e.g. induction of HIF1A, DDIT3, DDIT4 and GRP78). qPCR quantitation of a 9-gene panel correlated with glycaemic control in 12 additional recent-onset patients. The qPCR signature was also detected in PB from healthy first-degree relatives. CONCLUSIONS: A PB gene expression signature correlates with glycaemic control in the first year after diabetes diagnosis, and is present in at-risk subjects. These findings implicate monocyte phenotype as a candidate biomarker for disease progression pre- and post-onset, and systemic stresses as contributors to innate immune function in type 1 diabetes. CD14+ monocytes from a total of 16 children with recent-onset type 1 diabetes and 6 adult healthy controls were profiled in 2 independent microarrays.
Project description:OBJECTIVE: Novel biomarkers of disease progression after type 1 diabetes onset are needed. RESEARCH DESIGN AND METHODS: We profiled peripheral blood (PB) monocyte gene expression in 6 healthy subjects and 16 children with type 1 diabetes diagnosed ~3 months previously, and analyzed clinical features from diagnosis to 1 year. RESULTS: Monocyte expression profiles clustered into two distinct subgroups, representing mild and severe deviation from healthy controls, along the same continuum. Patients with strongly divergent monocyte gene expression had significantly higher insulin dose-adjusted HbA1c levels during the first year, compared to patients with mild deviation. The diabetes-associated expression signature identified multiple perturbations in pathways controlling cellular metabolism and survival, including endoplasmic reticulum and oxidative stress (e.g. induction of HIF1A, DDIT3, DDIT4 and GRP78). qPCR quantitation of a 9-gene panel correlated with glycaemic control in 12 additional recent-onset patients. The qPCR signature was also detected in PB from healthy first-degree relatives. CONCLUSIONS: A PB gene expression signature correlates with glycaemic control in the first year after diabetes diagnosis, and is present in at-risk subjects. These findings implicate monocyte phenotype as a candidate biomarker for disease progression pre- and post-onset, and systemic stresses as contributors to innate immune function in type 1 diabetes.
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion.