Project description:Bovine pre-transfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer (embryo study)
Project description:Combining the cytological as well as gene expression changes in the endometrium is required to understand the effects of subclinical endometritis on endometrium as well as embryo. Hence, the present study was aimed to investigate the gene expression profiles of subclinical endometrium as well the effect of the inflamed environment on the gene expression profile of the developing preimplantative embryo.
Project description:Bovine pre-transfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer (endometrial study)
Project description:The process of early development of mammals is subtly and accurately controlled by the regulation networks of embryo cells. Time course expression data measured at different stages during early embryo development process can give us valuable information by revealing the dynamic expression patterns of genes in genome wide scale. In this study, bovine embryo expression data were generated at oocyte, one cell stage, two cell stage, four cell stage, eight cell stage, sixteen cell stage, morula, and blastocyst; Human embryo expression data were generated at one cell stage, two cell stage, four cell stage, eight cell stage, morula, and blastocyst; Mouse embryo expression data were generated at one cell stage, two cell stage, four cell stage, eight cell stage, morula, and blastocyst. Experiment Overall Design: Bovine, Human, and Mouse embryos were harvested at successive stage from oocyte to blastocyste. Total RNAs were extracted, amplified and hybridized onto Affymetrix microarrays.
Project description:Pregnancy establishment in mammals requires a complex sequence of events, including bi-lateral embryo-maternal communication, leading up to implantation. This is the time when most pregnancy loss occurs in mammals (including humans and food production species) and dysregulation in embryo-maternal communication contributes to pregnancy loss. Embryo-derived factors modify the function of the endometrium for pregnancy success. We hypothesise that these previously unexplored conceptus-derived proteins may be involved in altering the function of the endometrium to facilitate early pregnancy events in mammals with different early pregnancy phenotypes. Here, we show that protein disulphide-isomerase (PDI) is a highly conserved protein among mammals, and provide evidence for a species-specific roles for PDI in endometrial function in mammals with different implantation strategies. We show how PDI alters the endometrial transcriptome in human and bovine in vitro in a species-specific manner, and using a microfluidic approach we demonstrate that it alters the secretome capability of the endometrium. We also provide evidence from in vitro assays using human-derived cells that MNS1, a transcript commonly downregulated in response to PDI in human and bovine endometrial epithelial cells, may be involved in the attachment phase of implantation. We propose that the trophoblast-derived protein PDI, is involved in supporting the modulation of the uterine luminal fluid secreted by the endometrium to support conceptus nourishment, and also in the process of embryo attachment to the uterine lumen for pregnancy success in mammals.