Project description:Recently genome-wide association studies have identified significant association between Alzheimer’s disease and variations in CLU, PICALM, BIN1, CR1, MS4A4/MS4A6E, CD2AP, CD33, EPHA1 and ABCA7. However, the pathogenic variants in these loci have not yet been found. We conducted a genome-wide scan for large copy number variations (CNVs) in a dataset of Caribbean Hispanic origin (554 controls and 559 cases with late-onset Alzheimer’s disease) that was previously investigated in a SNP-based genome-wide association study using Illumina HumanHap 650Y platform. We ran four CNV calling algorithms and analyzed rare large CNVs (>100 Kb) to obtain high-confidence calls that were detected by at least two algorithms. In total, 734 such CNVs were observed in our dataset. Global burden analyses did not reveal significant differences between cases and controls in CNV rate, distribution of deletions or duplications, total or average CNV size; and number of genes affected by CNVs. However, we observed a nominal association between Alzheimer’s disease and a ~470 Kb duplication on chromosome15q11.2 (P=0.037). This duplication, encompassing up to five genes (TUBGCP5, CYFIP1, NIPA2, NIPA1 and WHAMML1) was present in 10 cases (2.6%) and 3 controls (0.8%). The dosage increase of CYFIP1 and NIPA1 genes was further confirmed by quantitative PCR. The current study did not detect CNVs (including common CNVs) that affect novel Alzheimer’s disease loci reported by large genome-wide association studies. However, since the array technology used in our study has limitations in detecting small CNVs, future studies must carefully assess novel AD associated genes for the presence of disease related CNVs. Case-control analysis, screening of large copy number variation in 559 Alzheimer cases and 554 control subjects of Caribbean Hispanic ancestry
Project description:Recently genome-wide association studies have identified significant association between Alzheimer’s disease and variations in CLU, PICALM, BIN1, CR1, MS4A4/MS4A6E, CD2AP, CD33, EPHA1 and ABCA7. However, the pathogenic variants in these loci have not yet been found. We conducted a genome-wide scan for large copy number variations (CNVs) in a dataset of Caribbean Hispanic origin (554 controls and 559 cases with late-onset Alzheimer’s disease) that was previously investigated in a SNP-based genome-wide association study using Illumina HumanHap 650Y platform. We ran four CNV calling algorithms and analyzed rare large CNVs (>100 Kb) to obtain high-confidence calls that were detected by at least two algorithms. In total, 734 such CNVs were observed in our dataset. Global burden analyses did not reveal significant differences between cases and controls in CNV rate, distribution of deletions or duplications, total or average CNV size; and number of genes affected by CNVs. However, we observed a nominal association between Alzheimer’s disease and a ~470 Kb duplication on chromosome15q11.2 (P=0.037). This duplication, encompassing up to five genes (TUBGCP5, CYFIP1, NIPA2, NIPA1 and WHAMML1) was present in 10 cases (2.6%) and 3 controls (0.8%). The dosage increase of CYFIP1 and NIPA1 genes was further confirmed by quantitative PCR. The current study did not detect CNVs (including common CNVs) that affect novel Alzheimer’s disease loci reported by large genome-wide association studies. However, since the array technology used in our study has limitations in detecting small CNVs, future studies must carefully assess novel AD associated genes for the presence of disease related CNVs.
Project description:Ongoing studies using genomic microarrays and next-generation sequencing have demonstrated that the genetic contributions to cardiovascular diseases have been significantly ignored in the past. The aim of this study was to identify rare copy number variants in individuals with congenital pulmonary atresia (PA). Based on the hypothesis that rare structural variants encompassing key genes play an important role in heart development in PA patients, we performed high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. CNVs were identified in 17/82 patients (20.7%), and eight of these CNVs (9.8%) are considered potentially pathogenic. Five de novo CNVs occurred at two known congenital heart disease (CHD) loci (16p13.1 and 22q11.2). Two de novo CNVs that may affect folate and vitamin B12 metabolism were identified for the first time. A de novo 1-Mb deletion at 17p13.2 may represent a rare genomic disorder that involves mild intellectual disability and associated facial features. high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. Only 21 samples with potentially pathogenic CNVs are included in this records
Project description:Segmental copy number variations (CNVs) in the human genome are associated with developmental disorders and susceptibility to human diseases. More importantly, these variations may represent a major genetic component of our phenotypic diversity. In this study, using a whole genome array CGH assay, we identified 3,654 autosomal segmental CNVs, of which 800 appeared at a frequency of at least 3%. 77% of these frequent CNVs are novel. In the 95 individuals analyzed, the most diverse genomes differed by at least 9 Mb in size or varied by at least 266 loci in content. Approximately 68% of the 800 polymorphic regions overlap with genes, reflecting human diversity in senses (smell, hearing, taste, and sight), Rhesus phenotype, metabolism, and disease susceptibility. Intriguingly, 14 polymorphic regions harbor 21 of the known human microRNAs, raising the possibility of microRNAs’ contribution to phenotypic diversity in humans. This in depth survey of CNVs across the human genome provides a valuable baseline for studies involving human genetics. Keywords: array CGH, segmental copy number variations (CNVs)
2006-12-06 | GSE5442 | GEO
Project description:Preimplantation genetic testing for copy number variations