Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:To understand the gene expression in Saccharomyces cerevisiae under fermentative and respiraotry conditions, we perfomred the genome-wide gene expression profiling for the log-phase cells of S. cerevisiae wild type, sef1 deletion, and hyperactive SEF1-VP16 mutants under the YPD and YPGly conditions.
Project description:We analyzed genome-wide transcriptional changes in the S. cerevisiae strain BY4742 upon exposure to NP to identify differentially expressed genes, biological processes, metabolic pathways, and cellular compartments affected by this compound. For these analyses, we focused on two NP exposure scenarios: (1) exposure to a low inhibitory concentration (resulting in <15% reduction in cell number), and (2) exposure to a high inhibitory concentration (resulting in >65% reduction in cell number).
Project description:We report change in the chromatin contacts upon deletion of ATP-dependent chromatin remodellers (ISW1, ISW2 and CHD1) in Saccharomyces cerevisiae.
Project description:We report change in the nucleosome occupancy and accessibility upon deletion of ATP-dependent chromatin remodellers (ISW1, ISW2 & CHD1) in Saccharomyces cerevisiae.