Project description:Our findings have clinical implications. Identification of sputum exosomal miRNA helps explore the important biological pathways underlying the pathogenesis of bronchiectasis, thus unraveling candidate targets for future interventions of PA colonization. Apart from canonical inflammatory pathways, we have unraveled the modulation of longevity regulation pathway which opens a new avenue for exploring how PA colonization interacts with the airway epithelium. The significant correlation between sputum inflammatory biomarkers and miR-92b-5p and miR-223-3p provided further evidence on the unresolved inflammation in the PA-colonized microenvironment. However, causality cannot be inferred based on the current study design.
Project description:To assess gene expression changes, RNA-sequencing technology was employed to map the temporal shifts in the transcriptional profile of the host lung post-infection. Our findings provide novel insights into the pathogenesis of PA pulmonary infections and offer valuable suggestions for inhalational infection protection and immunotherapy.
Project description:Chronic airway infection with P. aeruginosa (PA) is a hallmark of cystic fibrosis (CF) disease. The mechanisms producing PA persistence in CF therapies remain poorly understood. To gain insight on PA physiology in patient airways and better understand how in vivo bacterial functioning differs from in vitro conditions, we investigated the in vivo proteomes of PA in 35 sputum samples from 11 CF patients. We developed a novel bacterial-enrichment method enabling improved identification of PA proteome with CF sputum samples. The in vivo PA proteomes were compared with the proteomes of ex vivo-grown PA populations from the same patient sample. We detected 1528 PA proteins (encoded by 1458 core genes and 70 accessory genes) that were expressed in CF airways, of which 1178 proteins were commonly identified with the ex vivo-grown PA populations. Label-free quantitation and proteome comparison revealed the in vivo up-regulation of siderophore TonB-dependent receptors, remodeling in central carbon metabolism including glyoxylate cycle and lactate utilization, and alginate overproduction. Knowledge of these in vivo proteome differences or others derived using the presented methodology could lead to future treatment strategies aimed at altering PA physiology in vivo to compromise infectivity or improve antibiotic efficacy.
Project description:Chitinases are ubiquitous enzymes involved in biomass degradation and chitin turnover in nature. Pseudomonas aeruginosa (PA), an opportunistic human pathogen, expresses ChiC, a secreted glycoside hydrolase 18 (GH18) family chitinase. Despite speculation about ChiC's role in PA disease pathogenesis, there is scant evidence supporting this hypothesis. Since PA cannot catabolize chitin, we investigated the potential function(s) of ChiC in PA pathophysiology
Project description:Chitinases are ubiquitous enzymes involved in biomass degradation and chitin turnover in nature. Pseudomonas aeruginosa (PA), an opportunistic human pathogen, expresses ChiC, a secreted glycoside hydrolase 18 (GH18) family chitinase. Despite speculation about ChiC's role in PA disease pathogenesis, there is scant evidence supporting this hypothesis. Since PA cannot catabolize chitin, we investigated the potential function(s) of ChiC in PA pathophysiology
Project description:Pseudomonas aeruginosa (Pa) is one of the main causative agents of nosocomial infections and the spread of multidrug-resistant strains is rising. The outer membrane composition of Pa restricts antibiotic entry and determines virulence. For efficient outer membrane protein biogenesis, the BAM complex and chaperones like Skp and SurA are crucial. Deletion mutants of bamB, bamC and the skp homolog hlpA as well as a conditional mutant of surA were investigated. The most profound effects were associated with a lack of SurA, characterized by increased membrane permeability, enhanced sensitivity to antibiotic treatment and attenuation of virulence in a Galleria mellonella infection model. Strikingly, the conditional deletion of surA in a multidrug-resistant bloodstream isolate re-sensitized the strain to antibiotic treatment. Mass spectrometry revealed striking alterations in the outer membrane composition. Thus, SurA of Pa is important for the insertion of many porins, type V secretion systems, TonB-dependent receptors, proteins involved in LPS transport and BAM complex components. Therefore, SurA of Pa serves as a promising target for developing a drug that shows antiinfective activity and sensitizes multidrug-resistant strains to antibiotics.