Project description:The HSC niche factor SCF is required for HSC maintenance. Using an Scf-GFP knockin mouse, we have identified a perivascular cell type in the bone marrow expressing high level of Scf. To characterize the novel Scf-GFP+ cells from the bone marrow, we performed microarray analysis on these cells.
Project description:The HSC niche factor SCF is required for HSC maintenance. Using an Scf-GFP knockin mouse, we have identified a perivascular cell type in the bone marrow expressing high level of Scf. To characterize the novel Scf-GFP+ cells from the bone marrow, we performed microarray analysis on these cells. Total RNA were isolated from 3 independent, freshly aliquots of FACS sorted 5,000 SCF-GFP+ cells or whole bone marrow cells isolated from young adult mice. Purified RNA was amplified using the WT-OvationM-bM-^DM-" Pico RNA Amplification system (NuGEN Technologies). Sense strand cDNA was generated using WT-OvationM-bM-^DM-" Exon Module (NuGEN), then fragmented and labeled using the FL-OvationM-bM-^DM-" cDNA Biotin Module V2 (NuGEN). 2.5M-BM-5g of labeled cDNA were hybridized to Affymetrix Mouse Gene ST 1.0 microarrays.
Project description:ATAC-seq profiling of Nfat5 KO and wild type macrophages derived from bone marrow (primary cells), treated or not with Lipopolysaccharide (LPS).
Project description:RNA and ATAC sequencing data of primary sorting CD45-Ter119-CD31-Scf; GFP+Cxcl12; DsRed+ bone marrow stromal cells ,2D cultured bone marrow stromal cells and 3D cultured bone marrow stromal cells. RNA sequencing data of sorted primary and 3D cocultured Lin-Sca1+C-kit+CD150+CD48+ hematopoietic stem cells from 8-12 weeks and 12-13 months old mice. RNA and ATAC sequencing data of primary sorting CD45-Ter119-CD31-Pdgfra+td-Tomato+ bone marrow stromal cells from young (8 wks), middle aged (12 months) and aged (22-24 months) Lepr-Cre;td-Tomato mice.
Project description:Adult hematopoietic stem cells (HSCs) reside primarily in bone marrow. However, hematopoietic stresses such as myelofibrosis, anemia, pregnancy, infection or myeloablation can mobilize HSCs to the spleen and induce extramedullary hematopoiesis (EMH). While the bone marrow HSC niche has been studied intensively, the EMH niche has received little attention. Here, we systematically assessed the physiological sources of the key niche factors, SCF and CXCL12, in the mouse spleen after EMH induction by cyclophosphamide plus granulocyte colony-stimulating factor, blood loss, or pregnancy. In each case, Scf was expressed by endothelial cells and Tcf21+ stromal cells, primarily around sinusoids in red pulp, while Cxcl12 was expressed by a subset of Tcf21+ stromal cells. EMH induction markedly expanded the Scf-expressing endothelial cells and stromal cells by inducing proliferation. Most splenic HSCs were adjacent to Tcf21+ stromal cells in red pulp. Conditional deletion of Scf from spleen endothelial cells or Scf or Cxcl12 from Tcf21+ stromal cells severely reduced spleen EMH and reduced blood cell counts without affecting bone marrow hematopoiesis. Endothelial cells and Tcf21+ stromal cells thus create the splenic EMH niche, which is necessary for the physiological response to diverse hematopoietic stresses. Unfractionated spleen cells (2 replicates) and FACS-sorted VE-cadherein negative Scf-GFP positive cells (3 replicates)