Project description:The aim of this study was to assess whether chronic treatment with RPV can modulate the progression of chronic liver disease, especially of non-alcoholic fatty liver disease (NAFLD), through a nutritional model in wild-type mice Mice were daily treated with RPV (p.o.) and fed with normal or high fat diet during 3 months to induce fatty liver disease
Project description:To assess changes in expression level of various chemokines and their receptors on diet-induced obesity, we analysed gene expression in adipose tissue of C56BL/6J mice fed a high-fat (HF) diet or normal chow diet for 8 weeks. HF diet-induced obese (DIO) mice showed adipose tissue inflammation and insulin resistance. Comprehensive gene expression analysis showed that MCP-1–CCR2 and CCL5–CCR5 signalling in epididymal white adipose tissue (eWAT) were enhanced during the development of obesity. Surprisingly, the gene expression of Cx3cl1 was decreased in the eWAT of DIO mice compared with lean mice. While Cx3cr1 expression showed no significant difference between DIO and lean mice. Decreased CX3CL1-CX3CR1 signalling in adipose tissue may also be involved in the development of obesity-induced adipose tissue inflammation and insulin resistance.
Project description:Core diet-induced obesity networks were constructed using Ingenuity pathway analysis (IPA) based on 332 high-fat diet responsive genes identified in liver by time-course microarray analysis (8 time-points over 24 weeks) of high-fat diet fed mice compared to normal diet fed mice. IPA identified five core diet-induced obesity networks with time-dependent gene expression changes in liver. When we merged core diet-induced obesity networks, Tlr2, Cd14 and Ccnd1 emerged as hub genes associated with both liver steatosis and inflammation and were altered in a time-dependent manner. Further protein-protein interaction network analysis revealed Tlr2, Cd14 and Ccnd1 were inter-related through the ErbB/insulin signaling pathway. Dynamic changes occur in molecular networks underlying diet-induced obesity. Tlr2, Cd14 and Ccnd1 appear to be hub genes integrating molecular interactions associated with the development of NASH. Therapeutics targeting hub genes and core diet-induced obesity networks may help ameliorate diet-induced obesity and NASH. Total RNA obtained from isolated liver of C57BL/6J mice fed normal diet or high fat diet for 0, 2, 4, 6, 8, 12, 16, 20 and 24 weeks.
Project description:The ketogenic diet has been successful in promoting weight loss among patients that have struggled with weight gain. This is due to the cellular switch in metabolism that utilizes liver-derived ketone bodies for the primary energy source rather than glucose. Fatty acid transport protein 2 (FATP2) is highly expressed in liver, small intestine, and kidney where it functions in both the transport of exogenous long chain fatty acids (LCFA) and in the activation to CoA thioesters of very long chain fatty acids (VLCFA). We have completed a multi-omic study of FATP2-null (Fatp2-/-) mice maintained on a ketogenic diet (KD) or paired control diet (CD), with and without a 24-hour fast (KD-fasted and CD-fasted) to address the impact of deleting FATP2 under high-stress conditions. Control (wt/wt) and Fatp2-/- mice were maintained on their respective diets for 4-weeks. Afterwards, half the population was sacrificed while the remaining were fasted for 24-hours prior to sacrifice. We then performed paired-end RNA-sequencing on the whole liver tissue to investigate differential gene expression. The differentially expressed genes mapped to ontologies such as the metabolism of amino acids and derivatives, fatty acid metabolism, protein localization, and components of the immune system’s complement cascade, and were supported by the proteome and histological staining.
Project description:Core diet-induced obesity networks were constructed using Ingenuity pathway analysis (IPA) based on 332 high-fat diet responsive genes identified in liver by time-course microarray analysis (8 time-points over 24 weeks) of high-fat diet fed mice compared to normal diet fed mice. IPA identified five core diet-induced obesity networks with time-dependent gene expression changes in liver. When we merged core diet-induced obesity networks, Tlr2, Cd14 and Ccnd1 emerged as hub genes associated with both liver steatosis and inflammation and were altered in a time-dependent manner. Further protein-protein interaction network analysis revealed Tlr2, Cd14 and Ccnd1 were inter-related through the ErbB/insulin signaling pathway. Dynamic changes occur in molecular networks underlying diet-induced obesity. Tlr2, Cd14 and Ccnd1 appear to be hub genes integrating molecular interactions associated with the development of NASH. Therapeutics targeting hub genes and core diet-induced obesity networks may help ameliorate diet-induced obesity and NASH.
Project description:To figure out how obesity drives glycolysis in CD4+ T cells, we performed RNA-sequencing to analyze the transcriptome of lean and obese-derived splenic CD4+ T cells. Mice were fed with either a normal diet (referred to lean mice) or a high-fat diet (HFD, 60 kcal% fat, referred to obese mice) generally from 6-8 weeks of age, for up to 4 months.
Project description:Acetaminophen is a widely used antipyretic and analgesic drug, and its overdose is the leading cause of drug-induced acute liver failure. This study aimed to investigate the effect and mechanism of Lacticaseibacillus casei Shirota (LcS), an extensively used and highly studied probiotic, on acetaminophen-induced acute liver injury. C57BL/6 mice were gavaged with LcS suspension or saline once daily for 7 days before the acute liver injury was induced via intraperitoneal injection of 300 mg/kg acetaminophen. The results showed that LcS significantly decreased acetaminophen-induced liver and ileum injury, as demonstrated by reductions in the increases in aspartate aminotransferase, total bile acids, total bilirubin, indirect bilirubin and hepatic cell necrosis. Moreover, LcS alleviated the acetaminophen-induced intestinal mucosal permeability, elevation in serum IL-1α and lipopolysaccharide, and decreased levels of serum eosinophil chemokine (eotaxin) and hepatic glutathione levels. Furthermore, analysis of the gut microbiota and metabolome showed that LcS reduced the acetaminophen-enriched levels of Cyanobacteria, Oxyphotobacteria, long-chain fatty acids, cholesterol and sugars in the gut. Additionally, the transcriptome and proteomics showed that LcS mitigated the downregulation of metabolism and immune pathways as well as glutathione formation during acetaminophen-induced acute liver injury. This is the first study showing that pretreatment with LcS alleviates acetaminophen-enriched acute liver injury, and it provides a reference for the application of LcS.