Project description:Compound CID 3538206 inhibits yeast TORC1 activity and functionally mimic rapamycin. We used microarrays to compare the global gene expression with the treatment of CID 3528206 and rapamycin. BY4741 yeast cells were treated with1% DMSO, 20 uM CID 3528206 and 200 nM rapamycin in duplicate for 3hrs. RNA extracted and labeled to probe yeast gene arrays
Project description:Compound CID 3538206 inhibits yeast TORC1 activity and functionally mimic rapamycin. We used microarrays to compare the global gene expression with the treatment of CID 3528206 and rapamycin.
Project description:The target of rapamycin (TOR) plays a central role in eukaryotic cell growth control. With prevalent hyper-activation of the mTOR pathway in human cancers, novel strategies to enhance TOR pathway inhibition are highly desirable. We used a yeast-based high-throughput chemical genetic screen to identify small-molecule enhancers of rapamycin (SMERs) and used whole genome expression analysis to identify their mechanisms of action. We treated yeast individually with SMERs 1-5, rapamycin, or DMSO (solvent control) for 30 minutes prior to RNA extraction and hybridization on Affymetrix microarrays. Expression profiles of SMER-treated samples were compared to that of DMSO (solvent control) and rapamycin-treated samples to identify gene expression signatures unique to SMER-treated samples.
Project description:The target of rapamycin (TOR) plays a central role in eukaryotic cell growth control. With prevalent hyper-activation of the mTOR pathway in human cancers, novel strategies to enhance TOR pathway inhibition are highly desirable. We used a yeast-based high-throughput chemical genetic screen to identify small-molecule enhancers of rapamycin (SMERs) and used whole genome expression analysis to identify their mechanisms of action.
Project description:The target of rapamycin (TOR) plays a central role in eukaryotic cell growth control. With prevalent hyper-activation of the mTOR pathway in human cancers, novel strategies to enhance TOR pathway inhibition are highly desirable. We used a yeast-based high-throughput chemical genetic screen to identify small-molecule enhancers of rapamycin (SMERs) and used whole genome expression analysis to identify their mechanisms of action.