Project description:Recent studies suggested that embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) may represent different pluripotent states as defined by gene expression profiles and differentiation potential. Here we addressed a contribution of a lineage stage-specific donor cell memory in modulating the functional properties of iPSCs. iPSCs were generated from hepatic lineage cells at an early (hepatoblast-derived, HB-iPSCs) and end stage (adult hepatocyte, AH-iPSCs) of hepatocyte differentiation as well as from mouse fetal fibroblasts (MEF-iPSCs) using a lentiviral vector encoding four pluripotency-inducing factors Oct4, Sox2, Klf4, and c-Myc. All resulting iPS cell lines acquired iPSCs phenotype as judged by the accepted criteria including morphology, expression of pluripotency markers, silencing of transducing factors, capacity of multilineage differentiation in teratoma assay and normal diploid karyotype. However, hepatoblasts were more susceptible to reprogramming than either AH or MEF, and HB-iPSCs were more efficient in directed differentiation towards hepatocytic lineage as compared to AH-iPSCs, MEF-iPSCs or mESCs. Extensive comparative transcriptome analyses of the early passage iPSCs, donor cells and mESCs revealed that despite global similarities in gene expression patterns between generated iPSCs and mESCs, HB-iPSCs retained a transcriptional memory (7 up- and 20 down-regulated genes) typical of the original cells. Continuous passaging of HB-iPSCs abolished most of these differences including a superior capacity of hepatic re-differentiation. These results suggest that retention of lineage stage-specific donor memory in iPSCs may facilitate differentiation into donor cell type. The identified gene set may be helpful to improve hepatic differentiation for therapeutic application in liver disease modeling. A total of 200 ng RNA from four independent biological replicates of MACS-sorted mESC and iPSC were linearly amplified according to manufactures’ specification (Ambion, Austin, Tx,). For in vitro transcription (IVT), reactions were incubated for 16 h at 37ºC. The efficiency of the single round amplification was measured by NanoDrop (ND1000, Thermo Scientific). Hybridization, washing, detection (Cy3-streptavidin, Amersham Biosciences, GE Healthcare), and scanning were performed on an illumina iScan system (Illumina) using reagents and following protocols supplied by the manufacturer. The biotinylated cRNA (750 ng/sample) was hybridized on Sentrix beadchips human Ref-8v3 for 18 h at 58ºC while rocking (5 rpm).
Project description:The integration of cell metabolism with signalling pathways, transcription factor networks and epigenetic mediators is critical in coordinating molecular and cellular events during embryogenesis. Induced pluripotent stem cells (IPSCs) are an established model for embryogenesis, germ layer specification and cell lineage differentiation, advancing the study of human embryonic development and the translation of innovations in drug discovery, disease modelling and cell-based therapies. The metabolic regulation of IPSC pluripotency is mediated by balancing glycolysis and oxidative phosphorylation, but there is a paucity of data regarding the influence of individual metabolite changes during cell lineage differentiation. We used <sup>1</sup>H NMR metabolite fingerprinting and footprinting to monitor metabolite levels as IPSCs are directed in a three-stage protocol through primitive streak/mesendoderm, mesoderm and chondrogenic populations. Metabolite changes were associated with central metabolism, with aerobic glycolysis predominant in IPSC, elevated oxidative phosphorylation during differentiation and fatty acid oxidation and ketone body use in chondrogenic cells. Metabolites were also implicated in the epigenetic regulation of pluripotency, cell signalling and biosynthetic pathways. Our results show that <sup>1</sup>H NMR metabolomics is an effective tool for monitoring metabolite changes during the differentiation of pluripotent cells with implications on optimising media and environmental parameters for the study of embryogenesis and translational applications.
Project description:Recent studies suggested that embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) may represent different pluripotent states as defined by gene expression profiles and differentiation potential. Here we addressed a contribution of a lineage stage-specific donor cell memory in modulating the functional properties of iPSCs. iPSCs were generated from hepatic lineage cells at an early (hepatoblast-derived, HB-iPSCs) and end stage (adult hepatocyte, AH-iPSCs) of hepatocyte differentiation as well as from mouse fetal fibroblasts (MEF-iPSCs) using a lentiviral vector encoding four pluripotency-inducing factors Oct4, Sox2, Klf4, and c-Myc. All resulting iPS cell lines acquired iPSCs phenotype as judged by the accepted criteria including morphology, expression of pluripotency markers, silencing of transducing factors, capacity of multilineage differentiation in teratoma assay and normal diploid karyotype. However, hepatoblasts were more susceptible to reprogramming than either AH or MEF, and HB-iPSCs were more efficient in directed differentiation towards hepatocytic lineage as compared to AH-iPSCs, MEF-iPSCs or mESCs. Extensive comparative transcriptome analyses of the early passage iPSCs, donor cells and mESCs revealed that despite global similarities in gene expression patterns between generated iPSCs and mESCs, HB-iPSCs retained a transcriptional memory (7 up- and 20 down-regulated genes) typical of the original cells. Continuous passaging of HB-iPSCs abolished most of these differences including a superior capacity of hepatic re-differentiation. These results suggest that retention of lineage stage-specific donor memory in iPSCs may facilitate differentiation into donor cell type. The identified gene set may be helpful to improve hepatic differentiation for therapeutic application in liver disease modeling.
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals. Undifferentiated aHDF- and PB-iPSCs from the same individuals (two Parkinson’s disease patients (PD #1 and PD #2) and one adult healthy donor (donor91))
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals. sibling aHDF-iPSC clones (201B6 and 201B7; derived from the same aHDFs) (1) undifferentiated state (n=4, biological replicate #1-#4) (2) CXCR4-positive cell populations sorted by flowcytometry after 7 days of endodermal differentiation (n=4, biological replicate #1-#4) (3) CXCR4-negative cell populations sorted by flowcytometry after 7 days of endodermal differentiation (n=4, biological replicate #1-#4)
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals.
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals.
Project description:We analyzed gene expression profiles of self-organizing, multi-cellular, 3D liver organoids derived by co-culture of induced Pluripotent Stem Cell and stromal progenitors. We report the RNA-seq results of liver organoid at day0, day2, day4, day6 of co-culture. We also report RNA-seq results of constituent of the liver organoid, which are human iPSC at hepatic specification stage, human Mesenchymal stem cells derived from bone marrow, human umbilical vein endothelial cell. As controls, we also report RNS-seq results of un-differentiated human iPSC, human iPSC at definitive endoderm stage, human liver tissue, and primary cultured human hepatocytes isolated from unused donor livers.
Project description:We monitored 9 pluripotent stem cell lines across three time points of hepatic directed differentiation, representing 3 developmental stages: undifferentiated (T0), definitive endoderm (T5), and early hepatocyte (T24). ESCs (n=3) and patient-derived normal (n=3) or PiZZ (n=3) iPSCs were analyzed in the undifferentiated state (T0), after differentiation to definitive endoderm (T5), and upon reaching hepatic stage (T24) for a total of 27 samples. We sought to test the hypothesis that a single transgene-free iPSC clone from each donor could be used to detect disease-specific differences between the normal cohort and the PiZZ cohort, anticipating that this difference would emerge only at a developmental stage in which the mutant AAT gene is expressed. Cells were sorted before analysis at T0 and T5 after antibody staining for TRA1-80+/SSEA3+ (T0) or C-kit+/CXCR4+ (T5) cells.
Project description:We monitored 9 pluripotent stem cell lines across three time points of hepatic directed differentiation, representing 3 developmental stages: undifferentiated (T0), definitive endoderm (T5), and early hepatocyte (T24). ESCs (n=3) and patient-derived normal (n=3) or PiZZ (n=3) iPSCs were analyzed in the undifferentiated state (T0), after differentiation to definitive endoderm (T5), and upon reaching hepatic stage (T24) for a total of 27 samples. We sought to test the hypothesis that a single transgene-free iPSC clone from each donor could be used to detect disease-specific differences between the normal cohort and the PiZZ cohort, anticipating that this difference would emerge only at a developmental stage in which the mutant AAT gene is expressed. Cells were sorted before analysis at T0 and T5 after antibody staining for TRA1-80+/SSEA3+ (T0) or C-kit+/CXCR4+ (T5) cells.