Project description:Water deficit stress (WDS) is a crucial factor that causes the inhibition of petal expansion and abnormal flower opening in rose. The regulatory mechanisms of petal expansion by WDS at transcriptional level were investigated by analysis expression profiles under WDS. Analysis used total RNA samples of petals taken from flowers treated by WDS comparison to those from control flowers. Transcriptome dynamics during treatment time responsive to WDS.
Project description:MicroRNAs (miRNAs) are small non-coding RNAs that play important roles by regulating other genes. Rose, Rosa rugosa Thunb., is an important ornamental and edible plant, yet there are only a few studies on the miRNAs and their functions in rose. Here we carried out computational and experimental analysis of miRNAs, phased small interfering RNAs (phasiRNAs) and mRNAs in rose by analyzing 10 small RNA sequencing profiles from roots, petals, pollens, stamens, and leaves and 4 RNA-seq profiles in leaves and petals of rose. To identify the targets of miRNAs and phasiRNAs, we produced a degradome profile for rose leaf which is analyzed using the SeqTar algorithm. This study identified 25 conserved pre-miRNAs, of which 24 have not been reported previously. We also found 22 novel pre-miRNAs. Three hundred and thirty nine 21 nucleotide (nt) PHAS loci, and forty nine 24 nt PHAS loci were also identified. We identified more than 19,000 putative targets of the conserved miRNAs/tasiRNAs using a criteria of less than 4 mismatches between miRNA and targets. Among these targets, 592 have shown significant accumulation of degradome reads. Our results demonstrate that the miR482 family triggers the generations of phasiRNAs by targeting nucleotide-binding, leucine-rich repeat (NB-LRR) disease resistance genes in rose. Our results also suggest that the deregulated genes in leaves and petals are significantly enriched in GO and KEGG pathways related to metabolic processes and photosynthesis. These results significantly enhanced our knowledge of the miRNAs and phasiRNAs, as well as their potential functions in rose.
Project description:Genome-wide studies in plants have provided evidence for the role of H3K9ac and H3K27me3 in gene activation and repression, respectively. The roles of these histone modifications in rose remain unknown and represent a represent a limitation to the full understanding of how thousands of bioprocesses are regulated. To determine the genomic landscape of these marks, we performed a ChIP-seq analysis using H3K9ac and H3K27me3 antibodies on petals from a heterozygous plant.
Project description:Water deficit stress (WDS) is a crucial factor that causes the inhibition of petal expansion and abnormal flower opening in rose. The regulatory mechanisms of petal expansion by WDS at transcriptional level were investigated by analysis expression profiles under WDS.
Project description:MicroRNAs (miRNAs) are small non-coding RNAs that regulate target mRNAs by inducing degradation or preventing translation of their target mRNAs. Rose, Rosa rugosa Thunb., is an important ornamental and edible plant, yet there are only a few studies on the miRNAs of rose. Here we carried out computational and experimental analysis of miRNAs and phased small interfering RNAs (phasiRNAs) in rose by analyzing 10 small RNA profiles from roots, petals, pollens, stamens, and leaves. To identify the targets of miRNAs and phasiRNAs, we generated a degradome profile for rose leaf which is analyzed using the SeqTar algorithm. This study identified 25 conserved pre-miRNAs, of which 24 have not been reported previously. We also found 22 novel pre-miRNAs. Three hundred and thirty nine 21 nucleotide (nt) PHAS loci, and forty nine 24 nt PHAS loci were also identified. We identified more than 4000 putative targets of the conserved miRNAs using a criteria of less than 4 mismatches between miRNA and targets. Among these targets, at least 171 have shown significant accumulation of degradome reads. Our results demonstrate that the miR482 family triggers the generations of phasiRNAs by targeting nucleotide-binding, leucine-rich repeat (NB-LRR) disease resistance genes in rose. These results significantly enhanced our knowledge of the miRNAs and phasiRNAs, as well as their potential functions in rose.
Project description:MicroRNAs (miRNAs) are small non-coding RNAs that regulate target mRNAs by inducing degradation or preventing translation of their target mRNAs. Rose, Rosa rugosa Thunb., is an important ornamental and edible plant, yet there are only a few studies on the miRNAs of rose. Here we carried out computational and experimental analysis of miRNAs and phased small interfering RNAs (phasiRNAs) in rose by analyzing 10 small RNA profiles from roots, petals, pollens, stamens, and leaves. To identify the targets of miRNAs and phasiRNAs, we generated a degradome profile for rose leaf which is analyzed using the SeqTar algorithm. This study identified 25 conserved pre-miRNAs, of which 24 have not been reported previously. We also found 22 novel pre-miRNAs. Three hundred and thirty nine 21 nucleotide (nt) PHAS loci, and forty nine 24 nt PHAS loci were also identified. We identified more than 4000 putative targets of the conserved miRNAs using a criteria of less than 4 mismatches between miRNA and targets. Among these targets, at least 171 have shown significant accumulation of degradome reads. Our results demonstrate that the miR482 family triggers the generations of phasiRNAs by targeting nucleotide-binding, leucine-rich repeat (NB-LRR) disease resistance genes in rose. These results significantly enhanced our knowledge of the miRNAs and phasiRNAs, as well as their potential functions in rose.
Project description:Transcriptome sequencing (RNA-seq) was used to profile genome-wide transcript abundance in the primary root growth zone (PRGZ) of maize seedlings grown in different water deficit treatments: well-watered (-0.02 MPa), mild water deficit stress (-0.3 MPa), or severe water deficit stress (-1.6 MPa). For each water deficit treatment, the PRGZ transcriptome was profiled at 26 hours after initiation of the water deficit treatment. By comparing the abundance of each transcript under mild or severe water deficit stress relative to its abundance under well-watered conditions, we identified transcripts that are differentially regulated in the PRGZ in response to the two levels of water deficit stress.
Project description:Petal senescence involves numerous programmed changes in biological and biochemical processes. Ubiquitination plays a critical role in protein degradation, a hallmark of organ senescence. Therefore, we investigated changes in the proteome and ubiquitome of senescing rose (Rosa hybrida) petals to better understand their involvement in petal senescence. Of 3859 proteins quantified in senescing petals, 1198 were up-regulated and 726 were down-regulated during senescence. We identified 2208 ubiquitinated sites including 384 with increased ubiquitination in 298 proteins and 1035 with decreased ubiquitination in 674 proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that proteins related to peptidases in proteolysis and autophagy pathways were enriched in the proteome, suggesting that protein degradation and autophagy play important roles in petal senescence. In addition, many transporter proteins accumulated in senescing petals, and several transport processes were enriched in the ubiquitome, indicating that transport of substances is associated with petal senescence and regulated by ubiquitination. Moreover, several components of the brassinosteroid (BR) biosynthesis and signaling pathways were significantly altered at the protein and ubiquitination levels, implying that BR plays important roles in petal senescence. Our data provide a comprehensive view of rose petal senescence at the posttranslational level.
Project description:By sequencing 36 cDNA libraries with Illumina technology, we identified genes differentially expressed in soybean plants in response to water deficit and genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes (Glyma v1.1), 35.52% exhibited expression oscillations in a 24 h period. This number increased to 39.23% when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants.