Project description:Kupffer cells have been implicated in the pathogenesis of various liver diseases. However, their involvement in metabolic disorders of the liver, including fatty liver disease, remains unclear. The present study sought to determine the impact of Kupffer cells on hepatic triglyceride storage and to explore the possible mechanisms involved. To that end, C57Bl/6 mice rendered obese and steatotic by chronic high-fat feeding were treated for 1 week with clodronate liposomes, which cause depletion of Kupffer cells. Loss of expression of marker genes Cd68, F4/80, and Clec4f, and loss of Cd68 immunostaining verified almost complete removal of Kupffer cells from the liver. Also, expression of complement components C1, the chemokine (C-C motif) ligand 6 (Ccl6), and cytokines interleukin-15 (IL-15) and IL-1beta were markedly reduced. Importantly, Kupffer cell depletion significantly decreased liver triglyceride and glucosylceramide levels concurrent with increased expression of genes involved in fatty acid oxidation including peroxisome proliferator-activated receptor alpha (PPARalpha), carnitine palmitoyltransferase 1A (Cpt1alpha), and fatty acid transport protein 2 (Fatp2). Treatment of mice with IL-1beta decreased expression of PPARalpha and its target genes, which was confirmed in primary hepatocytes. Consistent with these data, IL-1beta suppressed human and mouse PPARalpha promoter activity. Suppression of PPARalpha promoter activity was recapitulated by overexpression of nuclear factor kappaB (NF-kappaB) subunit p50 and p65, and was abolished upon deletion of putative NF-kappaB binding sites. Finally, IL-1beta and NF-kappaB interfered with the ability of PPARalpha to activate gene transcription. CONCLUSION: Our data point toward important cross-talk between Kupffer cells and hepatocytes in the regulation of hepatic triglyceride storage. The effect of Kupffer cells on liver triglycerides are at least partially mediated by IL-1beta, which suppresses PPARalpha expression and activity. Expression profiling of livers from mice fed control, low-fat diet diet or high-fat diet for 20weeks with or without knockdown of Kupffer cells.
Project description:Kupffer cells have been implicated in the pathogenesis of various liver diseases. However, their involvement in metabolic disorders of the liver, including fatty liver disease, remains unclear. The present study sought to determine the impact of Kupffer cells on hepatic triglyceride storage and to explore the possible mechanisms involved. To that end, C57Bl/6 mice rendered obese and steatotic by chronic high-fat feeding were treated for 1 week with clodronate liposomes, which cause depletion of Kupffer cells. Loss of expression of marker genes Cd68, F4/80, and Clec4f, and loss of Cd68 immunostaining verified almost complete removal of Kupffer cells from the liver. Also, expression of complement components C1, the chemokine (C-C motif) ligand 6 (Ccl6), and cytokines interleukin-15 (IL-15) and IL-1beta were markedly reduced. Importantly, Kupffer cell depletion significantly decreased liver triglyceride and glucosylceramide levels concurrent with increased expression of genes involved in fatty acid oxidation including peroxisome proliferator-activated receptor alpha (PPARalpha), carnitine palmitoyltransferase 1A (Cpt1alpha), and fatty acid transport protein 2 (Fatp2). Treatment of mice with IL-1beta decreased expression of PPARalpha and its target genes, which was confirmed in primary hepatocytes. Consistent with these data, IL-1beta suppressed human and mouse PPARalpha promoter activity. Suppression of PPARalpha promoter activity was recapitulated by overexpression of nuclear factor kappaB (NF-kappaB) subunit p50 and p65, and was abolished upon deletion of putative NF-kappaB binding sites. Finally, IL-1beta and NF-kappaB interfered with the ability of PPARalpha to activate gene transcription. CONCLUSION: Our data point toward important cross-talk between Kupffer cells and hepatocytes in the regulation of hepatic triglyceride storage. The effect of Kupffer cells on liver triglycerides are at least partially mediated by IL-1beta, which suppresses PPARalpha expression and activity.
Project description:Mutations in the gene encoding lipin 1 cause hepatic steatosis in fld mice, a genetic model of lipodystrophy. Lipin 1 appears to be highly involved in the control of fatty acid metabolism. Lipin 1 is most often located in the nucleus, but other studies suggest that lipin also has effects in the cytoplasm. However, the molecular function of lipin 1 is unclear. To evaluate the effects of activation of the lipin 1 system in liver, lipin 1beta was overexpressed in mouse liver using an adenoviral vector. We found that lipin 1 overexpression increased the expression of many genes involved in mitochondrial fatty acid oxidation while repressing expression of genes involved in lipogenesis. We believe that lipin is a transcriptional coactivator of the peroxisome proliferator-activated receptor (PPAR) complex. However, the many molecular aspects of its function remain unclear. Abstract of published manuscript follows:; Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway.Finck BN, Gropler MC, Chen Z, Leone TC, Croce MA, Harris TE, Lawrence JC Jr, Kelly DP. Center for Cardiovascular Research and Washington University School of Medicine, St. Louis, Missouri 63110; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110. Perturbations in hepatic lipid homeostasis are linked to the development of obesity-related steatohepatitis. Mutations in the gene encoding lipin 1 cause hepatic steatosis in fld mice, a genetic model of lipodystrophy. However, the molecular function of lipin 1 is unclear. Herein, we demonstrate that the expression of lipin 1 is induced by peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator 1alpha (PGC-1alpha), a transcriptional coactivator controlling several key hepatic metabolic pathways. Gain-of-function and loss-of-function strategies demonstrated that lipin selectively activates a subset of PGC-1alpha target pathways, including fatty acid oxidation and mitochondrial oxidative phosphorylation, while suppressing the lipogenic program and lowering circulating lipid levels. Lipin activates mitochondrial fatty acid oxidative metabolism by inducing expression of the nuclear receptor PPARalpha, a known PGC-1alpha target, and via direct physical interactions with PPARalpha and PGC-1alpha. These results identify lipin 1 as a selective physiological amplifier of the PGC-1alpha/PPARalpha-mediated control of hepatic lipid metabolism. Experiment Overall Design: Adult male C57BL6 mice were injected with adenovirus driving expression of mouse lipin 1beta or green fluorescent protein (GFP). Mice were recovered and sacrificed 6 days after injection. Total RNA was isolated and analyzed using Affymetrix microarray.
Project description:Regulation between the fed and fasted state in mammals is partially controlled by peroxisome proliferator activated receptor-alpha (PPAR-alpha). Expression of the receptor is high in liver, heart and skeletal muscle, but decreases with age. A combined 1H NMR spectroscopy and GC-MS metabolomic approach has been used to examine metabolism in liver, heart, skeletal muscle and adipose tissue in PPAR-alpha null mice and wild type controls during ageing between 3-13 months. For the PPAR-alpha-null mouse multivariate statistics highlighted hepatic steatosis, reductions in the concentrations of glucose and glycogen in both liver and muscle tissue, and profound changes in lipid metabolism in each tissue, reflecting known expression targets of the PPAR-alpha receptor. Hepatic glycogen and glucose also decreased with age for both genotypes. These findings indicate the development of age related hepatic steatosis in the PPAR-alpha-null mouse, with the normal metabolic changes associated with ageing exacerbating changes associated with genotype. Furthermore, the combined metabolomic and multivariate statistics approach provides a robust method for examining the interaction between age and genotype. </p> The GC-MS assay for this study can be found in the MetaboLights study MTBLS314.
Project description:Peroxisome proliferator-activated receptor alpha (PPARα) is a key regulator of hepatic fat oxidation that serves as an energy source during starvation. Vanin-1 has been described as a putative PPARα target gene in liver, but its function in hepatic lipid metabolism is unknown. We investigated the regulation of vanin-1, and total vanin activity, by PPARα in mice and humans. Furthermore, the function of vanin-1 in the development of hepatic steatosis in response to starvation was examined in Vnn1 deficient mice, and in rats treated with an inhibitor of vanin activity. Liver microarray analyses reveals that Vnn1 is the most prominently regulated gene after modulation of PPARα activity. In addition, activation of mouse PPARα regulates hepatic- and plasma vanin activity. In humans, consistent with regulation by PPARα, plasma vanin activity increases in all subjects after prolonged fasting, as well as after treatment with the PPARα agonist fenofibrate. In mice, absence of vanin-1 exacerbates the fasting-induced increase in hepatic triglyceride levels. Similarly, inhibition of vanin activity in rats induces accumulation of hepatic triglycerides upon fasting. Microarray analysis reveal that the absence of vanin-1 associates with gene sets involved in liver steatosis, and reduces pathways involved in oxidative stress and inflammation. We show that hepatic vanin-1 is under extremely sensitive regulation by PPARα and that plasma vanin activity could serve as a readout of changes in PPARα activity in human subjects. In addition, our data propose a role for vanin-1 in regulation of hepatic TG levels during fasting. Livers of wild type and vanin-1 knockout mice that were fed or fasted for 24h were subjected to gene expression analysis
Project description:Mutations in the gene encoding lipin 1 cause hepatic steatosis in fld mice, a genetic model of lipodystrophy. Lipin 1 appears to be highly involved in the control of fatty acid metabolism. Lipin 1 is most often located in the nucleus, but other studies suggest that lipin also has effects in the cytoplasm. However, the molecular function of lipin 1 is unclear. To evaluate the effects of activation of the lipin 1 system in liver, lipin 1beta was overexpressed in mouse liver using an adenoviral vector. We found that lipin 1 overexpression increased the expression of many genes involved in mitochondrial fatty acid oxidation while repressing expression of genes involved in lipogenesis. We believe that lipin is a transcriptional coactivator of the peroxisome proliferator-activated receptor (PPAR) complex. However, the many molecular aspects of its function remain unclear. Abstract of published manuscript follows: Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway.Finck BN, Gropler MC, Chen Z, Leone TC, Croce MA, Harris TE, Lawrence JC Jr, Kelly DP. Center for Cardiovascular Research and Washington University School of Medicine, St. Louis, Missouri 63110; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110. Perturbations in hepatic lipid homeostasis are linked to the development of obesity-related steatohepatitis. Mutations in the gene encoding lipin 1 cause hepatic steatosis in fld mice, a genetic model of lipodystrophy. However, the molecular function of lipin 1 is unclear. Herein, we demonstrate that the expression of lipin 1 is induced by peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator 1alpha (PGC-1alpha), a transcriptional coactivator controlling several key hepatic metabolic pathways. Gain-of-function and loss-of-function strategies demonstrated that lipin selectively activates a subset of PGC-1alpha target pathways, including fatty acid oxidation and mitochondrial oxidative phosphorylation, while suppressing the lipogenic program and lowering circulating lipid levels. Lipin activates mitochondrial fatty acid oxidative metabolism by inducing expression of the nuclear receptor PPARalpha, a known PGC-1alpha target, and via direct physical interactions with PPARalpha and PGC-1alpha. These results identify lipin 1 as a selective physiological amplifier of the PGC-1alpha/PPARalpha-mediated control of hepatic lipid metabolism. Keywords: response to lipin 1 activation
Project description:Metabolic dysfunction-associated steatohepatitis (MASH) is on the rise, and with limited pharmacological therapy available, identification of new metabolic targets is urgently needed. Oxalate is a terminal metabolite produced from glyoxylate by lactate dehydrogenase (LDHA). The liver-specific alanine-glyoxylate aminotransferase (AGXT) detoxifies glyoxylate, preventing oxalate accumulation. We report that AGXT is suppressed and LDHA is activated in livers from patients and mice with MASH, leading to oxalate overproduction. In turn, oxalate promotes steatosis in hepatocytes by inhibiting peroxisome proliferator activated receptor-alpha (PPARa) transcription and fatty acid b-oxidation (FAO), and induces monocyte chemotaxis via C-C motif chemokine ligand 2. In male mice with diet-induced MASH, blocking oxalate overproduction through hepatocyte-specific AGXT overexpression or pharmacological inhibition of LDHA potently lower steatosis, inflammation, and fibrosis by inducing PPARa-driven FAO, and suppressing monocyte chemotaxis, nuclear factor-kappa B and transforming growth factor-beta targets. These findings highlight hepatic oxalate overproduction as a new target for the treatment of MASH.
Project description:Metabolic dysfunction-associated steatohepatitis (MASH) is on the rise, and with limited pharmacological therapy available, identification of new metabolic targets is urgently needed. Oxalate is a terminal metabolite produced from glyoxylate by lactate dehydrogenase (LDHA). The liver-specific alanine-glyoxylate aminotransferase (AGXT) detoxifies glyoxylate, preventing oxalate accumulation. We report that AGXT is suppressed and LDHA is activated in livers from patients and mice with MASH, leading to oxalate overproduction. In turn, oxalate promotes steatosis in hepatocytes by inhibiting peroxisome proliferator activated receptor-alpha (PPARα) transcription and fatty acid β-oxidation (FAO), and induces monocyte chemotaxis via C-C motif chemokine ligand 2. In male mice with diet-induced MASH, blocking oxalate overproduction through hepatocyte-specific AGXT overexpression or pharmacological inhibition of LDHA potently lower steatosis, inflammation, and fibrosis by inducing PPARα-driven FAO, and suppressing monocyte chemotaxis, nuclear factor-kappaB and transforming growth factor-beta targets. These findings highlight hepatic oxalate overproduction as a new target for the treatment of MASH.
Project description:Glucocorticoids (GCs) and protein kinase A (PKA)-activating agents (beta-adrenergic receptor agonists) are mainstream asthma therapies based on their ability to prevent or reverse excessive airway smooth muscle (ASM) constriction. Their abilities to regulate another important feature of asthma - excessive ASM growth are poorly understood. Recent studies have suggested that GCs render agents of inflammation such as interleukin 1beta and tumor necrosis factor alpha mitogenic to ASM, via suppression of (antimitogenic) induced cyclooxygenase-2-dependent PKA activity. To further explore the mechanistic basis of these observations, we assessed the effects of epidermal growth factor and interleukin 1beta stimulation, and the modulatory effects of GC treatment and PKA inhibition, on the ASM transcriptome by microarray analysis. Keywords: gene expression