Project description:To evaluate the function of SICKLE in miRNA biogenesis and stress tolerance, we use whole genome tiling array to detect the expression change of protein coding genes, miRNAs, intronic regions in sck-l mutant comparing to wildtype.
Project description:To evaluate the function of SICKLE in miRNA biogenesis and stress tolerance, we use whole genome tiling array to detect the expression change of protein coding genes, miRNAs, intronic regions in sck-l mutant comparing to wildtype. sic-l mutant vs. wildtype. Two biological replicates each. Seedling plants were used.
Project description:Brassinosteroids (BRs) are endogenous plant hormones and essential for normal plant growth and development. MicroRNAs (miRNAs) of Arabidopsis thaliana are involved in mediating cell proliferation in leaves, stress tolerance, and root development. The specifics of BRs mechanisms involving miRNAs are unknown. To explore the role of miRNAs in BR-mediated pathways, we analyzed differences in miRNA profiles between control (mock solution) and 24-epibrassinolide (EBR) treatments from customized miRNA microarrays.
Project description:Mining the genome of Arabidopsis thaliana as a basis for the identification of novel bioactive peptides involved in oxidative stress tolerance
Project description:Plant microRNAs (miRNAs) have been implicated in plant immunity. These mainly focusing Arabidopsis thaliana threatened by (hemi-)biotrophic pathogens such as the bacterial pathogen Pseudomonas syringae. Here, we show that the Arabidopsis miRNA pathway is important for defense responses against the necrotrophic fungus Alternaria brassicicola. The miRNA pathway mutant ago1 exhibits an exaggerated response when treated with A. brassicicola, proposing that AGO1 is positive regulator. We found a subset of Arabidopsis miRNAs that quickly change their expression and their abundance in AGO1 complexes in plants exposed to A. brassicicola. The miRNAs responding to pathogen treatment are mainly targeting genes encoding metabolic enzymes, proteins involved protein degradation or transposons. In case of miR163, A. brassicicola infection results in increased levels of miRNA precursors and preferential accumulation of an unspliced form of pri-miR163, suggesting that A. brassicicola infection changes the transcriptional and post-regulation of pri-miRNAs. miR163 acts as a negative regulator of plant defense because mir163 mutants are more resistant when treated with A. brassicicola. Taken together, our results reveal the existence of positively and negatively acting Arabidopsis miRNA modulating the defense responses against A. brassicicola and highlight the importance of host miRNAs in the interaction between plants and necrotrophic pathogens.
Project description:Plant microRNAs (miRNAs) have been implicated in plant immunity. These mainly focusing Arabidopsis thaliana threatened by (hemi-)biotrophic pathogens such as the bacterial pathogen Pseudomonas syringae. Here, we show that the Arabidopsis miRNA pathway is important for defense responses against the necrotrophic fungus Alternaria brassicicola. The miRNA pathway mutant ago1 exhibits an exaggerated response when treated with A. brassicicola, proposing that AGO1 is positive regulator. We found a subset of Arabidopsis miRNAs that quickly change their expression and their abundance in AGO1 complexes in plants exposed to A. brassicicola. The miRNAs responding to pathogen treatment are mainly targeting genes encoding metabolic enzymes, proteins involved protein degradation or transposons. In case of miR163, A. brassicicola infection results in increased levels of miRNA precursors and preferential accumulation of an unspliced form of pri-miR163, suggesting that A. brassicicola infection changes the transcriptional and post-regulation of pri-miRNAs. miR163 acts as a negative regulator of plant defense because mir163 mutants are more resistant when treated with A. brassicicola. Taken together, our results reveal the existence of positively and negatively acting Arabidopsis miRNA modulating the defense responses against A. brassicicola and highlight the importance of host miRNAs in the interaction between plants and necrotrophic pathogens.
Project description:Identification of A Novel bZIP Transcription Factor in Camellia sinensis as A Negative Regulator of Freezing Tolerance in Transgenic Arabidopsis