Project description:To further investigate the homeostatic response of E. faecalis to Fe exposure, we examine the whole-genome transcriptional response of wild-type (WT) exposed to non toxic Fe excess. This experiment correspond the work titled Transcriptomic response of Enterococcus faecalis to iron excess (work in preparation)
Project description:To further investigate the homeostatic response of E. faecalis to Fe exposure, we examine the whole-genome transcriptional response of wild-type (WT) exposed to non toxic Fe excess. This experiment correspond the work titled Transcriptomic response of Enterococcus faecalis to iron excess (work in preparation) A four chip study using total RNA recovered from four separate wild-type cultures of Enterococcus faecalis OG1RF, two controls samples (N medium growth) and two iron samples (N medium gowth with 0.5 mM Fe-NTA). Each chip measures the expression level of 3,114 genome genes from Enterococcus faecalis strain V583 (A7980-00-01).
Project description:Liquid cultures of Enterococcus faecalis OG1RF and OG1RF Δbph were grown in tryptic soy broth without added dextrose (TSB-D) for 2 and 4 hr. At each time point, the transcriptomes were compared to identify differentially expressed genes in the Δbph mutant.
Project description:Changes in Enterococcus faecalis OG1RF gene expression during infection in a rabbit model of subdermal abscess formation were studied using microarray analysis.
Project description:Changes in Enterococcus faecalis OG1RF(pCF10) gene expression at 4 hours post-infection in a rabbit model of subdermal abscess formation were studied using RNA-seq analysis.
Project description:Enterococcus faecalis is often co-isolated with Pseudomonas aeruginosa in mixed-species biofilm-associated infections of wounds and the urinary tract. As a defence strategy, the host innately restricts iron availability at infection sites. Despite their co-prevalence, the polymicrobial interactions of these two pathogens in low iron conditions, such as those found in the host, remains unexplored. Here we show that E. faecalis inhibits P. aeruginosa growth within macrocolony biofilms when iron is restricted. E. faecalis lactate dehydrogenase (ldh1) gives rise to L-lactate production during fermentative growth. We find that E. faecalis ldh1 mutant fails to inhibit P. aeruginosa growth. Additionally, we demonstrate that ldh1 expression is induced when iron is restricted, resulting in increased lactic acid exported and consequently, a reduction in pH. Together, our results suggest that E. faecalis synergistically impact P. aeruginosa growth negatively by decreasing environmental pH and L-lactate-mediated iron chelation. Overall, this study highlights that the microenvironment in which the infection occurs is important for understanding its pathophysiology.
Project description:Enterococcus faecalis is a common commensal organism and a prolific nosocomial pathogen that causes biofilm-associated infections. Numerous E. faecalis OG1RF genes required for biofilm formation have been identified, but few studies have compared genetic determinants of biofilm formation and biofilm morphology across multiple conditions. Here, we cultured transposon (Tn) libraries in CDC biofilm reactors in two different media and used Tn sequencing (TnSeq) to identify core and accessory biofilm determinants, including many genes that are poorly characterized or annotated as hypothetical. Multiple secondary assays (96-well plates, submerged Aclar, and MultiRep biofilm reactors) were used to validate phenotypes of new biofilm determinants.