Project description:This study profiles transcriptomic changes of Arabidopsis thaliana Col-0 in response to submergence. This dataset includes CEL files, RMA signal values and MAS5 P/M/A calls from total mRNA populations of plants at 9 to 10 leaf rosette stage. Biological replicates of root and shoot tissues were harvested after 7 h and 24 h of submergence in darkness along with corresponding non-submerged dark controls. To characterize the dark response, non-submerged light controls plants were harvested at the 0 h time point. Quantitative profiling of cellular mRNAs was accomplished with the Affymetrix ATH1 platform. Changes in the transcriptome in response to submergence and early darkness were evaluated, and the data led to identification of genes co-regulated at the conditional and organ-specific level.
Project description:This study profiles transcriptomic changes of Arabidopsis thaliana Col-0 in response to submergence. This dataset includes CEL files, RMA signal values and MAS5 P/M/A calls from total mRNA populations of plants at 9 to 10 leaf rosette stage. Biological replicates of root and shoot tissues were harvested after 7 h and 24 h of submergence in darkness along with corresponding non-submerged dark controls. To characterize the dark response, non-submerged light controls plants were harvested at the 0 h time point. Quantitative profiling of cellular mRNAs was accomplished with the Affymetrix ATH1 platform. Changes in the transcriptome in response to submergence and early darkness were evaluated, and the data led to identification of genes co-regulated at the conditional and organ-specific level. 20 samples, 5 conditions (7 h submergence in darkness, 7 h darkness, 24 h submergence in darkness, 24 h darkness, 0 h light control), 2 RNA pools (rosette leaf and root tissues), 2 independent biological replicate experiments
Project description:Chloroplast function in photosynthesis is essential for plant growth and development. It is well-known that chloroplasts respond to various light conditions, however, it remains poorly understood about how chloroplasts respond to darkness. In this study, we found 90 darkness-responsive proteins in Arabidopsis chloroplasts under 8 h darkness treatment. Most of the proteins are nucleus-encoded, indicating that chloroplast darkness response is closely regulated by the nucleus. Among them, 17 ribosome proteins were obviously reduced after darkness treatment. The protein expressional patterns and physiological characters revealed the mechanisms in chloroplasts in response to darkness, e.g., (1) inhibition of photosystem II resulted in preferential cyclic electron flow around PSI; (2) promotion of starch degradation; (3) inhibition of chloroplastic translation; and (4) regulation by redox and jasmonate signaling. The results have improved our understanding of molecular regulatory mechanisms in chloroplasts under darkness.
Project description:To understand the contribution of the RPL24B protein, a component of the large 60S ribosomal subunit, to the translation of specific mRNAs, we compared the ribosome occupancy of mRNAs in wild type Arabidopsis and the rpl24b/stv1-1 T-DNA insertion mutant. RNA was fractionated using sucrose gradients into polysomal and nonpolysomal RNAs. We also determined overall total transcript levels. We used Affymetrix ATH1 microarrays. Each plant sample was analyzed for the mRNA abundance in total mRNA, polysomal mRNA, and nonpolysomal mRNA. Three biological replicates were collected. The rpl24b mutant was compared with wild type.
Project description:To understand the contribution of the poly(A)binding protein to the translation of specific mRNAs, we compared the ribosome occupancy of mRNAs in wild type Arabidopsis and pab2 pab8 double mutant seedlings. The mutants continue to express the PAB4 paralog of PABP. RNA was fractionated using sucrose gradients into polysomal and nonpolysomal RNAs. We also determined overall total transcript levels. We used Affymetrix ATH1 microarrays. Each plant sample was analyzed for the mRNA abundance in total mRNA (T), polysomal mRNA (PL), and nonpolysomal mRNA (NP). Four biological replicates were collected for polysomes and three for total RNA. The pab2 pab8 double mutant was compared with wild type.
Project description:Post-transcriptional gene regulation plays a significant role in the response to oxygen deprivation. Here, we utilized advances in next-generation sequencing technology to examine changes in transcriptional control, mRNA loading on to polysome, and regulation of ribosome activity during mRNA translation in 7-day-old Arabidopsis seedlings subjected to 2 hour hypoxia treatment.