Project description:Medulloblastoma (MB) is the most common malignant brain tumor in children. Patients whose tumors exhibit overexpression or amplification of the MYC oncogene (c-MYC) usually have an extremely poor prognosis, but there are no animal models of this subtype of the disease. Here we show that cerebellar stem cells expressing Myc and mutant Trp53 (p53) generate aggressive tumors following orthotopic transplantation. These tumors consist of large, pleiomorphic cells and resemble human MYC-driven MB at a molecular level. Notably, antagonists of PI3K/mTOR signaling, but not Hedgehog signaling, inhibit growth of tumor cells. These findings suggest that cerebellar stem cells can give rise to MYC-driven MB, and identify a novel model that can be used to test therapies for this devastating disease. To gain insight into the pathways that control growth of MYC-driven MB, we compared gene expression profiles of murine Myc/DNp53 (MP) tumor cells to those of freshly isolated cerebellar stem cells (Prom1+Lin- cells) and of tumors from Ptch1 mutant mice (a model for Sonic Hedgehog-associated MB). RNA was isolated from stem cells and tumor cells using the RNAqueous kit (Ambion). RNA was labeled and hybridized to Affymetrix Mouse Genome 430 2.0 arrays. 19 mouse cell samples (stem cells and tumor cells) were analyzed. There are four groups of samples, three with five biological replicates and the last with four (one outlier was removed). To gain insight into the mechanisms of transformation into tumors, we compared the gene expression profiles of MP tumor cells derived from stem cells (Myc/DNp53-infected Prom1+Lin- cells, designated MP-pl) or progenitors (Myc/DNp53-infected Prom1+ cells, designated MP-p) to gene expression profiles of uninfected stem cells (designated NSC) and profiles from a distinct model of medulloblastoma, the patched mutant mouse (designated ptch1).
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Group 3 medulloblastoma is often associated with MYC amplification or overexpression, while whether MYC overexpression alone is sufficient to induce tumorigenesis is unknown and the cell type(s) which can be transformed by MYC is unclear. Here, by generating a new mouse model, we demonstrated that overexpression of Myc alone is sufficient to transform astrocyte progenitors and granule neuron progenitors (GNP) in the early postnatal cerebellum following orthotopic transplantation. The resulting tumors resemble human Group 3 medulloblastoma in terms of both histology and gene expression profiles. Using these models we found that inhibition of lactate dehydrogenase A (LDHA) significantly reduced both murine and human MYC-driven tumor growth, but did not affect SHH medulloblastoma, indicating that LDHA is potential and specific therapeutic target for MYC-driven medulloblastoma.
Project description:We created mice, which are deficient for Myc specifically in cardiac myocytes by crossing crossed Myc-floxed mice (Mycfl/fl) and MLC-2VCre/+ mice. Serial analysis of earlier stages of gestation revealed that Myc-deficient mice died prematurely at E13.5-14.5. Morphological analyses of E13.5 Myc-null embryos showed normal ventricular size and structure; however, decreased cardiac myocyte proliferation and increased apoptosis was observed. BrdU incorporation rates were also decreased significantly in Myc-null myocardium. Myc-null mice displayed a 3.67-fold increase in apoptotic cardiomyocytes by TUNEL assay. We examined global gene expression using oligonucleotide microarrays. Numerous genes involved in mitochondrial death pathways were dysregulated including Bnip3L and Birc2. Keywords: wildtype vs Myc-null
Project description:By combining extensive biochemical fractionation with quantitative mass spectrometry, we directly examined the composition of soluble multiprotein complexes among diverse animal models. The project has been jointly supervised by Andrew Emili and Edward M. Marcotte. Project website: http://metazoa.med.utoronto.ca