Project description:We hypothesized that the genome segments of cultivated barley should show certain similarity with its ancestral wild barley. Instead of whole genome sequences, we employed RNA-Seq to investigated the genomic origin of modern cultivated barley using some representative wild barley genotypes from the Near East and Tibet, and representative world-wide selections of cultivated barley.
Project description:Leucine-rich repeat (LRR) domains are evolutionarily conserved in proteins that function in development and immunity. Somatic recombination of LRR sequences evolved to create diversity in jawless vertebrate adaptive immunity, yet the role repetitive LRR-encoding exons in humans remains unknown. We performed this RNA Seq study to understand how alternative splicing of NOD-like receptors (NLRs) at the locus encoding a LRR domain can regulate NLRs function, with a focus on NLRP3.
Project description:Hordeum vulgare is one of the first domesticated grains in the world and it has been reported that variations in the light environment have a substantial effect on barley plant development and biological processes. High-throughput RNA-Seq study was performed to investigate the complex transcriptome network required for photomorphogenesis in barley. Seedlings were grown in dark and light conditions and three biological replicates were sampled from each condition. Six libraries from poly-A rich mRNA fraction were subjected to 51bp single-end RNA-seq sequencing.
Project description:NILs containing five parental lines, three wild barley genotypes ssp. spontaneum: HID 4 (A), Iraq; HID 64 (B), Turkey; and HID 369 (C), Israel, one ssp. agriocrithon: HID 382(D)) and cv. Morex (ssp. vulgare, USA). Purpose: Variant calling to identifie markers associated with a awn length QTL on the distal part of chromosome 7HL
Project description:Plants have a large family of membrane receptor kinases (RKs) which sense extracellular signals to control plant growth, development, immunity, and stress response. The largest group of RKs contains an extracellular leucine-rich repeat (LRR) domain with over 200 members in Arabidopsis. However, the functional understanding of most of the LRR-RKs has been hampered by their genetic redundancy and the subtle phenotypes of RK overexpression. Here we show that the rapamycin-mediated heterodimerization of chimeric cytosolic kinase domains from receptor/co-receptor pairs in the plasma membrane can activate their downstream cellular signaling pathway, inducing the specific biological responses, including brassinosteroid, plant immunity, stomatal development, and lateral root development. This chemically controlled synthetic biology approach will be useful to investigate biological functions of LRR-RKs and their signaling pathways.
Project description:In the present study, we investigated the transcriptome features during hulless barley grain development. Using Illumina paired-end RNA-Sequencing, we generated two data sets of the developing grain transcriptomes from two hulless barley landraces.
Project description:Plants have the ability to shed organs that are no longer in use. In Arabidopsis thaliana abscission of floral organs involves cell wall remodeling and cell expansion prior to cell wall dissolution. IDA encodes a secreted peptide that signals through the leucine-rich repeat receptor-like kinases (LRR-RLKs) HAESA (HAE) (At4g28490) and HASEA-LIKE2 (HSL2) (At5g65710).
Project description:Plants have the ability to shed organs that are no longer in use. In Arabidopsis thaliana abscission of floral organs involves cell wall remodeling and cell expansion prior to cell wall dissolution. IDA encodes a secreted peptide that signals through the leucine-rich repeat receptor-like kinases (LRR-RLKs) HAESA (HAE) (At4g28490) and HASEA-LIKE2 (HSL2) (At5g65710).
Project description:Numerous leucine-rich repeat kinase 2 mutations identified throughout the protein are associated with Parkinson disease, however the activating G2019S kinase domain mutation is currently regarded as the most common cause of familial and sporadic forms of this disorder. Despite studies demonstrating the prominent role that its kinase activity plays in the pathobiology of leucine-rich repeat kinase 2, few substrates have been identified and only a subset of these have been linked to disease. Therefore, we utilized protein microarrays to screen over 9,000 human proteins in an unbiased radiometric assay for potential targets of the kinase.