Project description:Unlike in Asia and Latin America, Plasmodium vivax infections were rare in Sub-Saharan Africa due to the absence of the Duffy blood group antigen (Duffy Antigen), the only known erythrocyte receptor for the P. vivax merozoite invasion ligand, Duffy Binding Protein 1 (DBP1). However, P. vivax infections have been documented in Duffy-negative individuals throughout Africa, suggesting that P. vivax may use ligands other than DBP1 to invade Duffy-negative erythrocytes through other receptors. To identify potential P. vivax ligands, we compared parasite gene expression in Saimiri and Aotus monkey erythrocytes infected with P. vivax Salvador I (Sal I). DBP1 binds Aotus but does not bind to Saimiri erythrocytes, and thus P. vivax Sal I must invade Saimiri erythrocytes independently of DBP1. Comparing RNA sequencing (RNAseq) data for late stage infections in Saimiri and Aotus erythrocytes when invasion ligands are expressed, we identified genes that belong to tryptophan-rich antigen and MSP3 families that were more abundantly expressed in Saimiri infections as compared to Aotus infections. These genes may encode potential ligands responsible for P. vivax infections of Duffy-negative Africans.
Project description:Plasmodium vivax causes 25-40% of malaria cases worldwide, yet research on this human malaria parasite has been neglected. Nevertheless, the recent publication of the P. vivax reference genome now allows genomics and systems biology approaches to be applied to this pathogen. We show here that whole genome analysis of the parasite can be achieved directly from ex vivo-isolated parasites, without the need for in vitro propagation. A single isolate of P. vivax obtained from a febrile patient with clinical malaria from Peru was subjected to whole genome sequencing (30X coverage). This analysis revealed over 18,261 single nucleotide polymorphisms (SNPs), 6,257 of which were further validated using a tiling microarray. Within core chromosomal genes we find that one SNP per every 985 bases of coding sequence distinguishes this recent Peruvian isolate, designated IQ07, from the reference Sal1 strain obtained in 1970. This full-genome sequence of a P. vivax isolate, the second overall and first of an uncultured patient isolate, shows that the same regions with low numbers of aligned sequencing reads are also highly variable by genomic microarray analysis. Finally, we show that the genes containing the largest ratio of nonsynonymous to synonymous SNPs encode two AP2 transcription factors and the P. vivax multidrug resistance-associated protein (PvMRP1), an ABC transporter shown to be associated with quinoline and antifolate tolerance in P. falciparum. This analysis provides a new data set for comparative analysis with important potential for identifying markers for global parasite diversity and drug resistance mapping studies. Genome DNA from Peruvian P. vivax Isolate IQ07 vs. Reference Sal1
Project description:Transcription profile of the Plasmodium vivax intraerythrocytic cycle Total RNA in Plasmodium vivax strain at every 6 hour of intraerythrocytic cycle using RNA-seq
Project description:Plasmodium vivax causes 25-40% of malaria cases worldwide, yet research on this human malaria parasite has been neglected. Nevertheless, the recent publication of the P. vivax reference genome now allows genomics and systems biology approaches to be applied to this pathogen. We show here that whole genome analysis of the parasite can be achieved directly from ex vivo-isolated parasites, without the need for in vitro propagation. A single isolate of P. vivax obtained from a febrile patient with clinical malaria from Peru was subjected to whole genome sequencing (30X coverage). This analysis revealed over 18,261 single nucleotide polymorphisms (SNPs), 6,257 of which were further validated using a tiling microarray. Within core chromosomal genes we find that one SNP per every 985 bases of coding sequence distinguishes this recent Peruvian isolate, designated IQ07, from the reference Sal1 strain obtained in 1970. This full-genome sequence of a P. vivax isolate, the second overall and first of an uncultured patient isolate, shows that the same regions with low numbers of aligned sequencing reads are also highly variable by genomic microarray analysis. Finally, we show that the genes containing the largest ratio of nonsynonymous to synonymous SNPs encode two AP2 transcription factors and the P. vivax multidrug resistance-associated protein (PvMRP1), an ABC transporter shown to be associated with quinoline and antifolate tolerance in P. falciparum. This analysis provides a new data set for comparative analysis with important potential for identifying markers for global parasite diversity and drug resistance mapping studies.