Project description:Plants grow continuously and undergo numerous changes in their vegetative morphology and physiology during their life span. The molecular basis of these changes is largely unknown. To provide a more comprehensive picture of shoot development in Arabidopsis, microarray analysis was used to profile the mRNA content of shoot apices of different ages, as well as leaf primordia and fully-expanded leaves from 6 different positions on the shoot, in early-flowering and late-flowering genotypes. This extensive dataset provides a new and unexpectedly complex picture of shoot development in Arabidopsis. At any given time, the pattern of gene expression is different in every leaf on the shoot, and reflects the activity at least 6 developmental programs. Three of these are specific to individual leaves (leaf maturation, leaf aging, leaf senescence), two occur at the level of the shoot apex (vegetative phase change, floral induction), and one involves the entire shoot (shoot aging). Our results demonstrate that vegetative development is a much more dynamic process that previously imagined, and provide new insights into the underlying mechanism of this process.
Project description:Leaf development has been monitored chiefly by following anatomical markers. Analysis of transcriptome dynamics during leaf maturation revealed multiple expression patterns that rise or fall with age or that display age specific peaks. These were used to formulate a digital differentiation index (DDI), based on a set of selected markers with informative expression during leaf ontogeny. The leaf-based DDI reliably predicted the developmental state of leaf samples from diverse sources and was independent of mitotic cell division transcripts or propensity of the specific cell type. To calibrate and test the DDI a series of Arabidopsis shoot development was used (Efroni et al, 2008)