Project description:Primary cilium serves as a cellular M-bM-^@M-^\antennaM-bM-^@M-^] to sense environmental signals. Ciliogenesis requires the removal of CP110 to convert the mother centriole into the basal body. Actin dynamics is also critical for cilia formation. How these distinct processes are properly regulated remains unknown. Here we show that miR-129-3p, a microRNA conserved in the vertebrates, controlled cilia assembly by down-regulating both CP110 and four proteins critical for actin dynamics, Arp2, Toca1, abLIM1, and abLIM3. Consistently, blocking miR-129-3p repressed cilia formation in cultured mammalian cells, whereas its overexpression potently induced ciliogenesis in proliferating cells and extraordinary cilia elongation. Moreover, inhibition of miR-129-3p in zebrafish embryos suppressed cilia assembly in the KupfferM-bM-^@M-^Ys vesicle and pronephric duct, leading to developmental abnormalities including curved body, pericardial oedema, and randomised left-right patterning. Our results thus unravel a novel mechanism that orchestrates both the centriole-to-basal body transition and subsequent cilia assembly via microRNA-mediated posttranscriptional regulations. We want to find the targets of miR-129-3p by overexpressing miR-129-3p oligo or control oligo in hTERT-RPE1 cells. Through microarray analysis we could check the downregulated genes and these genes might be the targets of miR-129-3p. RPE1 cells were transfected with control (Ctrl) or miR-129-3p (M129) oligo for 72h, and harvested for RNA extraction and hybridization on Affymetrix microarrays. Two samples: RPE1-Ctrl, RPE1-M129
Project description:Primary cilium serves as a cellular “antenna” to sense environmental signals. Ciliogenesis requires the removal of CP110 to convert the mother centriole into the basal body. Actin dynamics is also critical for cilia formation. How these distinct processes are properly regulated remains unknown. Here we show that miR-129-3p, a microRNA conserved in the vertebrates, controlled cilia assembly by down-regulating both CP110 and four proteins critical for actin dynamics, Arp2, Toca1, abLIM1, and abLIM3. Consistently, blocking miR-129-3p repressed cilia formation in cultured mammalian cells, whereas its overexpression potently induced ciliogenesis in proliferating cells and extraordinary cilia elongation. Moreover, inhibition of miR-129-3p in zebrafish embryos suppressed cilia assembly in the Kupffer’s vesicle and pronephric duct, leading to developmental abnormalities including curved body, pericardial oedema, and randomised left-right patterning. Our results thus unravel a novel mechanism that orchestrates both the centriole-to-basal body transition and subsequent cilia assembly via microRNA-mediated posttranscriptional regulations. We want to find the targets of miR-129-3p by overexpressing miR-129-3p oligo or control oligo in hTERT-RPE1 cells. Through microarray analysis we could check the downregulated genes and these genes might be the targets of miR-129-3p.
Project description:Oxaliplatin (oxPt) resistance in colorectal cancers (CRC) is a major unsolved problem. Consequently, predictive markers and a better understanding of resistance mechanisms are urgently needed. To investigate if the recently identified predictive miR-625-3p is functionally involved in oxPt resistance, stable and inducible models of miR-625-3p dysregulation were analyzed. Ectopic expression of miR-625-3p in CRC cells led to increased resistance towards oxPt. The mitogen-activated protein kinase (MAPK) kinase 6 (MAP2K6/MKK6) – an activator of p38 MAPK - was identified as a functional target of miR-625-3p, and, in agreement, was down-regulated in patients not responding to oxPt therapy. The miR-625-3p resistance phenotype could be reversed by anti-miR-625-3p treatment and by ectopic expression of a miR-625-3p insensitive MAP2K6 variant. Transcriptome, proteome and phosphoproteome profiles revealed inactivation of MAP2K6-p38 signaling as a possible driving force behind oxPt resistance. We conclude that miR-625-3p induces oxPt resistance by abrogating MAP2K6-p38 regulated apoptosis and cell cycle control networks.
Project description:Progressive ventricular enlargement is one of the most reproducible and recognizable structural abnormalities in schizophrenia, and is associated with more severe symptoms and poorer clinical outcome. The mechanisms of ventricular enlargement in schizophrenia is unknown. We identified that progressive ventricular enlargement is associated with deceleration of motile cilia beating in ependymal cells lining ventricular walls in murine models of schizophrenia-associated 22q11 deletion syndrome (22q11DS). The cilia beating deficit is caused by an aberrant elevation of Drd1, which is highly enriched in the motile cilia. Haploinsufficiency of the microRNA-processing gene Dgcr8 is responsible for the Drd1 elevation in ependymal cells of 22q11DS mice, and is mediated by reduction of Drd1-targeting microRNAs miR-674-3p and miR-382-3p. Replenishing miR-674-3p or miR-382-3p in 22q11DS mice rescued the motile cilia beating abnormalities and normalized the ventricular size. Knockdown of these microRNA mimicked cilia beating and ventricular deficits. Ventricular enlargement was also caused by Crispr/cas9-mediated deletion of the Drd1 seed site for miR-674-3p/miR-382-3p. This suggests that Dgcr8-miR-674-3p/miR-382-3p-Drd1–dependent disruption of cilia motility in ependymal cells is a pathogenic event underlying schizophrenia-associated ventricular enlargement.
Project description:MiRNAs have been shown to alter both protein expression and secretion in different cellular contexts. By combining in vitro, in vivo and in silico techniques, we demonstrated that overexpression of pre-miR-1307 reduced the ability of breast cancer cells to induce endothelial cell sprouting and angiogenesis. However, the molecular mechanism behind this and the effect of the individual mature miRNAs derived from pre-miR-1307 on protein secretion and is largely unknown. Here, we overexpressed miR-1307-3p|0, -3p|1 and 5p|0 in MDA-MB-231 breast cancer cells and assessed the impact of miRNA overexpression on protein secretion by Mass Spectrometry. Unsupervised hierarchical clustering revealed a distinct phenotype induced by overexpression of miR-1307-5p|0 compared to the controls and to the 5’isomiRs derived from the 3p-arm. Together, our results suggest different impacts of miR-1307-3p and miR-1307-5p on protein secretion which is in line with our in vitro observation that miR-1307-5p, but not the isomiRs derived from the 3p-arm reduce endothelial cell sprouting in vitro. Hence these data support the hypothesis that miR-1307-5p is at least partly responsible for impaired vasculature in tumors overexpressing pre-miR-1307.
Project description:Long non-coding RNAs (lncRNAs) play pivotal roles in diseases such as osteoarthritis (OA). However, knowledge of the biological roles of lncRNAs is limited in OA. We aimed to explore the biological function and molecular mechanism of HOTTIP in chondrogenesis and cartilage degradation. We used the human mesenchymal stem cell (MSC) model of chondrogenesis, in parallel with, tissue biopsies from normal and OA cartilage to detect HOTTIP, CCL3, and miR-455-3p expression in vitro. Biological interactions between HOTTIP and miR-455-3p were determined by RNA silencing and overexpression in vitro. We evaluated the effect of HOTTIP on chondrogenesis and degeneration, and its regulation of miR-455-3p via competing endogenous RNA (ceRNA). Our in vitro ceRNA findings were further confirmed within animal models in vivo. Mechanisms of ceRNAs were determined by bioinformatic analysis, a luciferase reporter system, RNA pull-down, and RNA immunoprecipitation (RIP) assays. We found reduced miR-455-3p expression and significantly upregulated lncRNA HOTTIP and CCL3 expression in OA cartilage tissues and chondrocytes. The expression of HOTTIP and CCL3 was increased in chondrocytes treated with interleukin-1β (IL-1β) in vitro. Knockdown of HOTTIP promoted cartilage-specific gene expression and suppressed CCL3. Conversely, HOTTIP overexpression reduced cartilage-specific genes and increased CCL3. Notably, HOTTIP negatively regulated miR-455-3p and increased CCL3 levels in human primary chondrocytes. Mechanistic investigations indicated that HOTTIP functioned as ceRNA for miR-455-3p enhanced CCL3 expression. Taken together, the ceRNA regulatory network of HOTTIP/miR-455-3p/CCL3 plays a critical role in OA pathogenesis and suggests HOTTIP is a potential target in OA therapy.
Project description:Oxaliplatin (oxPt) resistance in colorectal cancers (CRC) is a major unsolved problem. Consequently, predictive markers and a better understanding of resistance mechanisms are urgently needed. To investigate if the recently identified predictive miR-625-3p is functionally involved in oxPt resistance, stable and inducible models of miR-625-3p dysregulation were analyzed. Ectopic expression of miR-625-3p in CRC cells led to increased resistance towards oxPt. The mitogen-activated protein kinase (MAPK) kinase 6 (MAP2K6/MKK6) – an activator of p38 MAPK - was identified as a functional target of miR-625-3p, and, in agreement, was down-regulated in patients not responding to oxPt therapy. The miR-625-3p resistance phenotype could be reversed by anti-miR-625-3p treatment and by ectopic expression of a miR-625-3p insensitive MAP2K6 variant. Transcriptome, proteome and phosphoproteome profiles revealed inactivation of MAP2K6-p38 signaling as a possible driving force behind oxPt resistance. We conclude that miR-625-3p induces oxPt resistance by abrogating MAP2K6-p38 regulated apoptosis and cell cycle control networks. Experimental design for mass spectrometry SILAC experiments can be found at https://figshare.com/s/8e79f008e0e58ec6efc2 or https://doi.org/10.6084/m9.figshare.4888139