Project description:Background: How prenatal smoke exposure affects DNA methylation leading to atopic disorders remains to be addressed. Epigenetic biomarkers informative of prenatal smoke exposure and atopic disorders are wanting. Since most children suffering from atopic dermatitis (AD) continue to develop asthma later in life, we explored whether prenatal smoke exposure e induces DNA methylation and searched for predictive epigenetic biomarkers for smoke related atopic disorders. Methods: Methylation differences associated with smoke exposure were screened by Illumina methylation panel for children from the Taiwan birth panel study cohort initially. Information about development of atopic dermatitis (AD) and risk factors were collected. Cord blood cotinine levels were measured to represent prenatal smoke exposure. CpG loci that demonstrated a statistically significant difference in methylation were validated by methylation-dependent fragment separation (MDFS). Differential methylation in three genes (TSLP, GSTT1, and CYB5R3) was identified through the screen and their functions were investigated. Results: Among these, only thymic stromal lymphopoietin (TSLP) gene displayed significant difference in promoter methylation percentage after being validated by MDFS (p=0.029). TSLP gene was further investigated in a larger sample of 92 children from the cohort. Methylation status of the TSLP 5′-CpG island (CGI) was found to be significantly associated with prenatal smoke exposure (OR=3.59, 95%CI=1.49-8.64; cotinine level 0.10 ng/ml, sensitivity= 77%; specificity = 61%) and with AD (OR=4.77, 95%CI=1.47-15.53). The degree of TSLP 5′CGI methylation inversely correlated with TSLP protein expression levels (per unit: β=-6.69 ng/ml; 95% CIs, -12.80~-0.59; p=0.032). Conclusions: The effect of prenatal tobacco smoke exposure on the risk for AD may be mediated through DNA methylation. Cord blood methylated TSLP 5′CGI may be a potential epigenetic biomarker for environmentally-related atopic disorders. The buffy coat and plasma samples were separated and stored at −80°C. DNA (100 ng-500 ng) was extracted from cord white blood cells. Microarrays have been performed to investigate fourteen samples, which were classified as two groups according to cotinine exposure dosage (7 versus 7 : high exposure verses low exposure).
Project description:Background: How prenatal smoke exposure affects DNA methylation leading to atopic disorders remains to be addressed. Epigenetic biomarkers informative of prenatal smoke exposure and atopic disorders are wanting. Since most children suffering from atopic dermatitis (AD) continue to develop asthma later in life, we explored whether prenatal smoke exposure e induces DNA methylation and searched for predictive epigenetic biomarkers for smoke related atopic disorders. Methods: Methylation differences associated with smoke exposure were screened by Illumina methylation panel for children from the Taiwan birth panel study cohort initially. Information about development of atopic dermatitis (AD) and risk factors were collected. Cord blood cotinine levels were measured to represent prenatal smoke exposure. CpG loci that demonstrated a statistically significant difference in methylation were validated by methylation-dependent fragment separation (MDFS). Differential methylation in three genes (TSLP, GSTT1, and CYB5R3) was identified through the screen and their functions were investigated. Results: Among these, only thymic stromal lymphopoietin (TSLP) gene displayed significant difference in promoter methylation percentage after being validated by MDFS (p=0.029). TSLP gene was further investigated in a larger sample of 92 children from the cohort. Methylation status of the TSLP 5′-CpG island (CGI) was found to be significantly associated with prenatal smoke exposure (OR=3.59, 95%CI=1.49-8.64; cotinine level 0.10 ng/ml, sensitivity= 77%; specificity = 61%) and with AD (OR=4.77, 95%CI=1.47-15.53). The degree of TSLP 5′CGI methylation inversely correlated with TSLP protein expression levels (per unit: β=-6.69 ng/ml; 95% CIs, -12.80~-0.59; p=0.032). Conclusions: The effect of prenatal tobacco smoke exposure on the risk for AD may be mediated through DNA methylation. Cord blood methylated TSLP 5′CGI may be a potential epigenetic biomarker for environmentally-related atopic disorders.
Project description:Introduction: Prenatal and postnatal cigarette smoke exposure enhances the risk of developing asthma. Despite this as well as other smoking related risks, 11% of women still smoke during pregnancy. We hypothesized that cigarette smoke exposure during prenatal development generates long lasting differential methylation altering transcriptional activity that correlates with disease. Methods: In a house dust mite (HDM) model of allergic airway disease, we measured airway hyperresponsiveness (AHR) and airway inflammation between mice exposed prenatally to cigarette smoke (CS) or filtered air (FA). DNA methylation and gene expression were then measured in lung tissue. Results: We demonstrate that HDM-treated CS mice develop a more severe allergic airway disease compared to HDM-treated FA mice including increased AHR and airway inflammation. While DNA methylation changes between the two HDM-treated groups failed to reach genome-wide significance, 99 DMRs had an uncorrected p-value < 0.001. 6 of these 99 DMRs were selected for validation, based on the immune function of adjacent genes, and only 2 of the 6 DMRs confirmed the bisulfite sequencing data. Additionally, genes near these 6 DMRs (Lif, Il27ra, Tle4, Ptk7, Nfatc2, and Runx3) are differentially expressed between HDM-treated CS mice and HDM-treated FA mice. Conclusions: Our findings confirm that prenatal exposure to cigarette smoke is sufficient to modify allergic airway disease, however, it is unlikely that specific methylation changes account for the exposure-response relationship. These findings highlight the important role in utero cigarette smoke exposure plays in the development of allergic airway disease. Lung DNA methylation profiles of mice exposed in utero to cigarette smoke (CS) then treated with house dust mite (HDM, n = 8) or saline (n = 6), or exposed in utero to filtered air (FA) then treated with HDM (n = 9) or saline (n = 6)
Project description:Introduction: Prenatal and postnatal cigarette smoke exposure enhances the risk of developing asthma. Despite this as well as other smoking related risks, 11% of women still smoke during pregnancy. We hypothesized that cigarette smoke exposure during prenatal development generates long lasting differential methylation altering transcriptional activity that correlates with disease. Methods: In a house dust mite (HDM) model of allergic airway disease, we measured airway hyperresponsiveness (AHR) and airway inflammation between mice exposed prenatally to cigarette smoke (CS) or filtered air (FA). DNA methylation and gene expression were then measured in lung tissue. Results: We demonstrate that HDM-treated CS mice develop a more severe allergic airway disease compared to HDM-treated FA mice including increased AHR and airway inflammation. While DNA methylation changes between the two HDM-treated groups failed to reach genome-wide significance, 99 DMRs had an uncorrected p-value < 0.001. 6 of these 99 DMRs were selected for validation, based on the immune function of adjacent genes, and only 2 of the 6 DMRs confirmed the bisulfite sequencing data. Additionally, genes near these 6 DMRs (Lif, Il27ra, Tle4, Ptk7, Nfatc2, and Runx3) are differentially expressed between HDM-treated CS mice and HDM-treated FA mice. Conclusions: Our findings confirm that prenatal exposure to cigarette smoke is sufficient to modify allergic airway disease, however, it is unlikely that specific methylation changes account for the exposure-response relationship. These findings highlight the important role in utero cigarette smoke exposure plays in the development of allergic airway disease.
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:We report the DNA methylation profiles in the brain cortex of animal models of neurodevelopmental disorders (rat with prenatal exposure to valproate and mouse with prenatal exposure to poly I:C) treated with TAK-418.
Project description:To investigate whether paternal tobacco smoke (PTS) was associated with prenatal epigenetic programming of CG site methylation, 20 cord blood DNA samples from newborns with and without PTS were subjected to microarray assay of 1,505 CG loci in 807 genes by Illumina GoldenGate® technology bead system to obtain high-throughput DNA Methylation profiles. Samples included 14 newborns without PTS exposure, and 6 newborns with PTS exposure.
Project description:There is growing evidence that paternal pre-conception cigarette smoke (CS) exposure is associated with increased risk of behavioral disorders and cancer in offspring. To characterize the effects of CS exposure on the sperm epigenome and offspring neurodevelopment, we investigated the impact of pre-conception paternal CS exposure on mouse sperm DNA methylation and gene expression in offspring. We further investigated the role of oxidative stress on sperm epigenetic changes using a mouse model (Nrf-/-) with impaired antioxidant capacity. Lastly, we evaluated the capacity for sperm DNA methylation to recover following removal of CS for 1-5 spermatogenic cycles (28-171 days). We found that smoking significantly impacts sperm DNA methylation as well as DNA methylation and gene expression in offspring. These changes were largely recapitulated in Nrf-/- mice independent of smoke exposure. Recovery experiments indicated that about half of differentially methylated regions returned to normal within 28 days of removal from smoke, however additional recovery following longer periods was not observed. Thus, we present strong evidence that cigarette smoke exposure induces paternally mediated, heritable epigenetic changes. Parallel studies performed in Nrf-/- mice provide evidence for oxidative stress as the predominant underlying mechanism for smoke-induced epigenetic changes to sperm as well as changes in the offspring of smoke-exposed sires. Lastly, recovery experiments indicate that while many epigenetic changes are corrected following removal from smoke exposure, aberrant methylation persists at a significant number of regions even after five spermatogenic cycles
Project description:There is growing evidence that paternal pre-conception cigarette smoke (CS) exposure is associated with increased risk of behavioral disorders and cancer in offspring. To characterize the effects of CS exposure on the sperm epigenome and offspring neurodevelopment, we investigated the impact of pre-conception paternal CS exposure on mouse sperm DNA methylation and gene expression in offspring. We further investigated the role of oxidative stress on sperm epigenetic changes using a mouse model (Nrf-/-) with impaired antioxidant capacity. Lastly, we evaluated the capacity for sperm DNA methylation to recover following removal of CS for 1-5 spermatogenic cycles (28-171 days). We found that smoking significantly impacts sperm DNA methylation as well as DNA methylation and gene expression in offspring. These changes were largely recapitulated in Nrf-/- mice independent of smoke exposure. Recovery experiments indicated that about half of differentially methylated regions returned to normal within 28 days of removal from smoke, however additional recovery following longer periods was not observed. Thus, we present strong evidence that cigarette smoke exposure induces paternally mediated, heritable epigenetic changes. Parallel studies performed in Nrf-/- mice provide evidence for oxidative stress as the predominant underlying mechanism for smoke-induced epigenetic changes to sperm as well as changes in the offspring of smoke-exposed sires. Lastly, recovery experiments indicate that while many epigenetic changes are corrected following removal from smoke exposure, aberrant methylation persists at a significant number of regions even after five spermatogenic cycles
Project description:DNA methylation from Grady Trauma Project Parental and childhood exposure to trauma increases an individual's lifetime risk for psychiatric and stress-related disorders. This study evaluates DNA methylation in saliva from children, with the goal of identifying associations between peripheral DNA methylation and psychiatric symptoms.