Project description:Velo-cardio-facial syndrome/DiGeorge syndrome/22q11.2 deletion syndrome (22q11DS) patients have a submucous cleft palate, velo-pharyngeal insufficiency associated with hypernasal speech, facial muscle hypotonia and feeding difficulties. Inactivation of both alleles of mouse Tbx1, encoding a T-box transcription factor, deleted on 22q11.2, results in a cleft palate and a reduction or loss of branchiomeric muscles. To identify genes downstream of Tbx1 for myogenesis, gene profiling was performed on mandibular arches (MdPA1) from Tbx1+/+ and Tbx1-/- mouse embryos. To obtain enough RNA for microarray hybridization experiments, dissected mandibular arches from three Tbx1+/+ and three Tbx1-/- E9.5 embryos were pooled according to genotype, with three microarrays performed in total per genotype. Affymetrix Mouse Gene ST 1.0 arrays (Affymetrix) were used. Hybridization, washing, staining and scanning were performed in the Genomics Core at Einstein (http://www.einstein.yu.edu/genetics/CoreFacilities.aspx?id=23934) according to the Affymetrix manual.
Project description:The Dlx homeobox genes have central roles in controlling patterning and differentiation of the brain and craniofacial primordia. In the brain, loss of Dlx function results in defects in the production, migration and differentiation of GABAergic neurons, that can lead to epilepsy. In the branchial arches, loss of Dlx function leads to craniofacial malformations that include trigeminal axon pathfinding defects. To determine how these genes function, we wish to identify the transcriptional circuitry that lies downstream of these transcription factors by comparing gene expression in wild type with Dlx mutant CNS and craniofacial tissues. 1) Compare gene expression in the maxillay branch of the first branchial arch (BA) of E10.5 wild type and Dlx2 -/- mutants. 2) Compare gene expression in the maxillary branch of the first BA of E10.5 wild type and Dlx1/2 -/- mutants. 3) Compare gene expression in wild type maxillary and mandibular branchial arches. 4) Compare gene expressionin mandibular branch of Dlx5/6 -/- mutants with wild type mandibular branch. The Dlx transcription factors are essential for controlling patterning of the brain and craniofacial primordia. In the brain, they control differentiation of GABAergic neurons of the basal ganglia. In the branchial arches, they control regional patterning. I hypothesize that there will be some conserved and some divergent mechanisms that the Dlx genes use in controlling brain and craniofacial development. We have already performed array analyses on Dlx function in the developing basal ganglia (with TGEN) by comparing expressed genes in wild type and Dlx1/2 mutants. Here we will compare gene expression in the brachial arches of wild type and Dlx mutant mice. 1) Generate E10.5 mouse embryos that are either wild type, Dlx2-/-, Dlx1/2 -/- or Dlx5/6 -/-. 2) Determine genotype by PCR. 3) Dissect branchial arches from the different genotypes. 4) Separate maxillary and mandibular branch of each branchial arch. 5) Prepare total RNA from the specimens. Obtain sufficient tissue to obtain 10 ug of total RNA - based on previous experience we anticipate that this will require ~ 10 branchial arches. We will pool the tissue from different embryos of the same genotype. 6) Send total RNA to TGEN for probe preparation, hybridization and array result analysis.
Project description:The Dlx homeobox genes have central roles in controlling patterning and differentiation of the brain and craniofacial primordia. In the brain, loss of Dlx function results in defects in the production, migration and differentiation of GABAergic neurons, that can lead to epilepsy. In the branchial arches, loss of Dlx function leads to craniofacial malformations that include trigeminal axon pathfinding defects. To determine how these genes function, we wish to identify the transcriptional circuitry that lies downstream of these transcription factors by comparing gene expression in wild type with Dlx mutant CNS and craniofacial tissues. 1) Compare gene expression in the maxillay branch of the first branchial arch (BA) of E10.5 wild type and Dlx2 -/- mutants. 2) Compare gene expression in the maxillary branch of the first BA of E10.5 wild type and Dlx1/2 -/- mutants. 3) Compare gene expression in wild type maxillary and mandibular branchial arches. 4) Compare gene expressionin mandibular branch of Dlx5/6 -/- mutants with wild type mandibular branch. The Dlx transcription factors are essential for controlling patterning of the brain and craniofacial primordia. In the brain, they control differentiation of GABAergic neurons of the basal ganglia. In the branchial arches, they control regional patterning. I hypothesize that there will be some conserved and some divergent mechanisms that the Dlx genes use in controlling brain and craniofacial development. We have already performed array analyses on Dlx function in the developing basal ganglia (with TGEN) by comparing expressed genes in wild type and Dlx1/2 mutants. Here we will compare gene expression in the brachial arches of wild type and Dlx mutant mice. 1) Generate E10.5 mouse embryos that are either wild type, Dlx2-/-, Dlx1/2 -/- or Dlx5/6 -/-. 2) Determine genotype by PCR. 3) Dissect branchial arches from the different genotypes. 4) Separate maxillary and mandibular branch of each branchial arch. 5) Prepare total RNA from the specimens. Obtain sufficient tissue to obtain 10 ug of total RNA - based on previous experience we anticipate that this will require ~ 10 branchial arches. We will pool the tissue from different embryos of the same genotype. 6) Send total RNA to TGEN for probe preparation, hybridization and array result analysis. Keywords: other
Project description:Velo-cardio-facial syndrome/DiGeorge syndrome/22q11.2 deletion syndrome (22q11DS) patients have a submucous cleft palate, velo-pharyngeal insufficiency associated with hypernasal speech, facial muscle hypotonia and feeding difficulties. Inactivation of both alleles of mouse Tbx1, encoding a T-box transcription factor, deleted on 22q11.2, results in a cleft palate and a reduction or loss of branchiomeric muscles. To identify genes downstream of Tbx1 for myogenesis, gene profiling was performed on mandibular arches (MdPA1) from Tbx1+/+ and Tbx1-/- mouse embryos.
Project description:Velo-cardio-facial syndrome/DiGeorge syndrome/22q11.2 deletion syndrome (22q11DS) patients have a submucous cleft palate, velo-pharyngeal insufficiency associated with hypernasal speech, facial muscle hypotonia and feeding difficulties. Inactivation of both alleles of mouse Tbx1, encoding a T-box transcription factor, deleted on 22q11.2, results in a cleft palate and a reduction or loss of branchiomeric muscles. To identify genes downstream of Tbx1 for myogenesis, gene profiling was performed on mandibular arches (MdPA1) from Tbx1+/+ and Tbx1-/- mouse embryos.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other