Project description:Thyroid hormone improves left ventricular remodeling and cardiac performance after myocardial infarction (MI), but the molecular basis is unknown. This study was designed to detect gene expression changes in left ventricular non-infarcted areas at 4 weeks following myocardial infarction with and without thyroid hormone treatment. The results suggest that altered expression of genes for molecular function and biological process may be involved in the beneficial effects of thyroid hormone treatment following myocardial infarction in rats.
Project description:Thyroid hormone improves left ventricular remodeling and cardiac performance after myocardial infarction (MI), but the molecular basis is unknown. This study was designed to detect gene expression changes in left ventricular non-infarcted areas at 4 weeks following myocardial infarction with and without thyroid hormone treatment. The results suggest that altered expression of genes for molecular function and biological process may be involved in the beneficial effects of thyroid hormone treatment following myocardial infarction in rats. MI was produced by ligation of the left anterior descending coronary artery in female SD rats. Rats were divided into the following groups: (1) Sham MI, (2) MI, and (3) MI+T4 treatment (T4 pellet 3.3mg, 60 days release, implanted subcutaneously immediately following MI). Four weeks after surgery, total RNA was isolated from left ventricular non-infarcted areas for microarray analysis using the Illumina RatRef-12 Expression BeadChip Platform.
Project description:A series of two color gene expression profiles obtained using Agilent 44K expression microarrays was used to examine sex-dependent and growth hormone-dependent differences in gene expression in rat liver. This series is comprised of pools of RNA prepared from untreated male and female rat liver, hypophysectomized (‘Hypox’) male and female rat liver, and from livers of Hypox male rats treated with either a single injection of growth hormone and then killed 30, 60, or 90 min later, or from livers of Hypox male rats treated with two growth hormone injections spaced 3 or 4 hr apart and killed 30 min after the second injection. The pools were paired to generate the following 6 direct microarray comparisons: 1) untreated male liver vs. untreated female liver; 2) Hypox male liver vs. untreated male liver; 3) Hypox female liver vs. untreated female liver; 4) Hypox male liver vs. Hypox female liver; 5) Hypox male liver + 1 growth hormone injection vs. Hypox male liver; and 6) Hypox male liver + 2 growth hormone injections vs. Hypox male liver. A comparison of untreated male liver and untreated female liver liver gene expression profiles showed that of the genes that showed significant expression differences in at least one of the 6 data sets, 25% were sex-specific. Moreover, sex specificity was lost for 88% of the male-specific genes and 94% of the female-specific genes following hypophysectomy. 25-31% of the sex-specific genes whose expression is altered by hypophysectomy responded to short-term growth hormone treatment in hypox male liver. 18-19% of the sex-specific genes whose expression decreased following hypophysectomy were up-regulated after either one or two growth hormone injections. Finally, growth hormone suppressed 24-36% of the sex-specific genes whose expression was up-regulated following hypophysectomy, indicating that growth hormone acts via both positive and negative regulatory mechanisms to establish and maintain the sex specificity of liver gene expression. For full details, see V. Wauthier and D.J. Waxman, Molecular Endocrinology (2008)
Project description:Comparison of both LncRNAs and mRNAs expression in the border zone of the myocardial infarction rats and the sham operation rats Border zone (BZ) of the myocardial infarction is critical to patients. Current treatments of myocardial infarction are primarily aimed to save the dying myocardial cell in the border zone. During myocardial infarction, certain changes in BZ, e.g, apoptosis, fibrosis, inflammation, etc, played an important role in deciding the survival. Impairment and recovery of BZ has been linked to gene expression changes. The aim of our study was to obtain a global expression profile of lncRNAs and mRNAs of the border zone in Wistar rats myocardial infarction, and identify the changes during myocardial infarction.