Project description:Through deep sequencing and functional screening in zebrafish, we find that miR-221 is essential for angiogenesis. miR-221 knockdown phenocopied defects associated with loss of the tip cell-expressed Flt4 receptor. Furthermore, miR-221 was required for tip cell proliferation and migration, as well as tip cell potential in mosaic blood vessels. miR-221 knockdown also prevented “hyper-angiogenesis” defects associated with Notch deficiency and miR-221 expression was inhibited by Notch signaling. Finally, miR-221 promoted tip cell behavior through repression of two targets: cyclin-dependent kinase inhibitor 1b (cdkn1b) and phosphoinositide-3-kinase regulatory subunit 1 (pik3r1). These results identify miR-221 as an important regulatory node through which tip cell migration and proliferation are controlled during angiogenesis. Identification of endothelial-expressed microRNA from FACS-isolated zebrafish endothelial cells.
Project description:Through deep sequencing and functional screening in zebrafish, we find that miR-221 is essential for angiogenesis. miR-221 knockdown phenocopied defects associated with loss of the tip cell-expressed Flt4 receptor. Furthermore, miR-221 was required for tip cell proliferation and migration, as well as tip cell potential in mosaic blood vessels. miR-221 knockdown also prevented “hyper-angiogenesis” defects associated with Notch deficiency and miR-221 expression was inhibited by Notch signaling. Finally, miR-221 promoted tip cell behavior through repression of two targets: cyclin-dependent kinase inhibitor 1b (cdkn1b) and phosphoinositide-3-kinase regulatory subunit 1 (pik3r1). These results identify miR-221 as an important regulatory node through which tip cell migration and proliferation are controlled during angiogenesis.
Project description:Endothelial tip cells guiding tissue vascularization are primary targets for angiogenic therapies. Whether tip cells require differential signals to develop their complex branching patterns remained unknown. Here we show that diving tip cells invading the neuroretina (D-tip cells) are distinct from tip cells guiding the superficial retinal vascular plexus (S-tip cells). D-tip cells have a unique transcriptional signature, including high TGFβ signaling, and acquire blood-retina barrier properties. Endothelial deletion of TGFβ receptor I (Alk5) inhibits D-tip cell identity acquisition and deep vascular plexus formation. Loss of endothelial ALK5, but not of the canonical SMAD effectors, leads to aberrant contractile pericyte differentiation, and hemorrhagic vascular malformations. Our data reveal stage-specific tip cell heterogeneity as a requirement for retinal vascular development and suggest that noncanonical-TGFβ signaling could improve retinal revascularization and neural function in ischemic retinopathy.
Project description:Endothelin signaling is required for neural crest migration and homeostatic regulation of blood pressure. Here we report that constitutive over-expression of Endothelin-2 (Edn2) in the mouse retina perturbs vascular development by inhibiting endothelial cell (EC) migration across the retinal surface and subsequent EC invasion into the retina. Developing endothelial cells exist in one of two states: tip cells at the growing front, and stalk cells in the vascular plexus behind the front. This division of endothelial cell states is one of the central organizing principle of angiogenesis. In the developing retina, Edn2 over-expression leads to over-production of endothelial tip cells by both morphologic and molecular criteria. Spatially localized over-expression of Edn2 produces a correspondingly localized endothelial response. Edn2 over-expression in the early embryo inhibits vascular development at mid-gestation, but Edn2 over-expression in developing skin and brain has no discernable effect on vascular structure. Inhibition of retinal angiogenesis by Edn2 requires expression of Endothelin receptor A (Ednra) but not Ednrb in the neural retina. Taken together, these observations imply that the neural retina responds to Edn2 by synthesizing one or more factors that promote the endothelial tip cell state and inhibit angiogenesis. The response to Edn2 is sufficiently potent that it over-rides the activities of other homeostatic regulators of angiogenesis, such as vascular endothelial growth factor. Z/Edn2 females were crossed to Six3-Cre; Six3-Cre males. Postnatal P8 pups were genotyped for the Z/Edn2 allele by detection of Laz-Z activity in tail clips. Retinas from 2 - 3 pups were pooled for each data point.
Project description:Endothelin signaling is required for neural crest migration and homeostatic regulation of blood pressure. Here we report that constitutive over-expression of Endothelin-2 (Edn2) in the mouse retina perturbs vascular development by inhibiting endothelial cell (EC) migration across the retinal surface and subsequent EC invasion into the retina. Developing endothelial cells exist in one of two states: tip cells at the growing front, and stalk cells in the vascular plexus behind the front. This division of endothelial cell states is one of the central organizing principle of angiogenesis. In the developing retina, Edn2 over-expression leads to over-production of endothelial tip cells by both morphologic and molecular criteria. Spatially localized over-expression of Edn2 produces a correspondingly localized endothelial response. Edn2 over-expression in the early embryo inhibits vascular development at mid-gestation, but Edn2 over-expression in developing skin and brain has no discernable effect on vascular structure. Inhibition of retinal angiogenesis by Edn2 requires expression of Endothelin receptor A (Ednra) but not Ednrb in the neural retina. Taken together, these observations imply that the neural retina responds to Edn2 by synthesizing one or more factors that promote the endothelial tip cell state and inhibit angiogenesis. The response to Edn2 is sufficiently potent that it over-rides the activities of other homeostatic regulators of angiogenesis, such as vascular endothelial growth factor.