Project description:Adult female three-spined stickleback fish (Gasterosteus aculeatus) were exposed to 10 individual chemicals, 26 mixtures of these chemicals, or control conditions in a flow-through system for 4 days. Transcriptomics was performed on liver samples by microarray. The main aims were to determine molecular signatures induced by these chemicals in the three-spined stickleback, discover whether these persisted in chemical mixtures and identify non-additive molecular responses in chemical mixtures exposures.
Project description:Three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution - adaptation to freshwater environment. While genetic adaptations to freshwater are well-studied, epigenetic adaptations attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into freshwater environment and freshwater sticklebacks placed into seawater. For the first time, we demonstrated that genes encoding ion channels kcnd3, cacna1fb, gja3 are differentially methylated between marine and freshwater populations. We also showed that after placing marine stickleback into fresh water, its DNA methylation profile partially converges to the one of a freshwater stickleback. This suggests that immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. Some of the regions that were reported previously to be under selection in freshwater populations also show differential methylation. Thus, epigenetic changes might represent a parallel mechanism of adaptation along with genetic selection in freshwater environment.
Project description:Three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution - adaptation to freshwater environment. While genetic adaptations to freshwater are well-studied, epigenetic adaptations attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into freshwater environment and freshwater sticklebacks placed into seawater. For the first time, we demonstrated that genes encoding ion channels kcnd3, cacna1fb, gja3 are differentially methylated between marine and freshwater populations. We also showed that after placing marine stickleback into fresh water, its DNA methylation profile partially converges to the one of a freshwater stickleback. This suggests that immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. Some of the regions that were reported previously to be under selection in freshwater populations also show differential methylation. Thus, epigenetic changes might represent a parallel mechanism of adaptation along with genetic selection in freshwater environment. This is the RNA-seq experiment, DNA methylation data (bisulfite-seq) is provided under accession number GSE82310.
Project description:The aim of this study was to describe the excretory–secretory proteins from the helminth Schistocephalus solidus and its intermediate host, the three-spined stickleback Gasterosteus aculeatus L., which are likely to be involved in interactions between them. Combined samples of washes from the G. aculeatus sticklebacks cavity infected with the S. solidus, and washes from the parasite surface were used as experimental samples (samples 5 to 8), while washes from the uninfected fish body cavity were used as control (samples 1 to 4). The obtained samples were analyzed using mass-spectrometry nLC–MS/MS.
Project description:In order to identify gene expression difference between marine and freshwater stickleback populations, we compared the transcriptomes of seven adult tissues (eye, gill, heart, hypothalumus, liver, pectoral muscle, telencephalon) between a marine population sampled from the mouth of the Little Campbell river in British Columbia (LITC) and a freshwater population (Fishtrap Creek, FTC) from northern Washington. For each population, the sampled individuals were the lab-reared progeny of a single pair of wild-caught parents.