Project description:The ts-p53 E285K protein is a rare p53 mutant with temperature-sensitive (ts) loss of function characteristics. In cancer cells, which express ts-p53 E285K intrinsically, endogenous wild type p53 activity is reconstituted by appropriate cultivation temperature (permissive condition). At non-appropriate cultivation temperature (restrictive condition) this p53 mutant is inactive. The present study took advantage of this mechanism and employed IPH-926 lobular breast cancer cells and BT-474 ductal breast cancer cells, which both harbor endogenous ts-p53 E285K, for the transcriptional profiling of p53-responsive genes. This new approach eliminated the need for genetic modification or cytotoxic stimulation to achive a p53 response in the cells being investigated . Three subseqent passages of IPH-926 lobular breast cancer cells (harboring ts-p53 E285K) were seeded into two parallel culture dishes each and were allowed to adopt to restrictive and permissive condition for 24 h before analysis on Affymetrix U133 Plus 2.0 microarrays. Subsequently, this experiment was repeated with BT-474 ductal breast cancer cells (also harboring ts-p53 E285K). To gate out non-specific temperature effects, the same experiment was also performed with MCF-7 breast cancer cells (harboring wt p53). Probe sets differentially expressed at restrictive versus permissive condition in MCF-7 were considered as non-specifically regulated. These probe sets were excluded from the final statistical analysis of IPH-926 and BT-474 expression data. response to restored p53 activity
Project description:The ts-p53 E285K protein is a rare p53 mutant with temperature-sensitive (ts) loss of function characteristics. In cancer cells, which express ts-p53 E285K intriniscally, endogenous wild type p53 activity is reconstituted by appropriate cultivation temperature (permissive condition). At non-appropriate cultivation temperature (restrictive condition) this p53 mutant is inactive. The present study took advantage of this mechanism and employed IPH-926 lobular breast cancer cells and BT-474 ductal breast cancer cells, which both harbor endogenous ts-p53 E285K, for the transcriptional profiling of p53-responsive genes. This new approach eliminated the need for genetic modification or cytotoxic stimulation to achive a p53 response in the cells being investigated .
Project description:MicroRNAs (miRNAs) are small, non-coding, endogenous RNAs involved in many human diseases including breast cancer. miRNA expression profiling of human breast cancers has identified miRNAs related to the clinical diversity of the disease and potentially provides novel diagnostic and prognostic tools for breast cancer therapy. In order to further understand the roles of miRNAs in association with oncogenic drivers and in specifying sub-types of breast cancer, we performed miRNAexpression profiling on mammary tumors from eight well-characterized genetically -engineered Mouse (GEM) models of human breast cancer including MMTV–H-Ras, -Her2/neu, -c-Myc, -PymT, –Wnt1 and C3(1)/SV40 T/t-antigen transgenic mice, BRCA1fl/fl;p53+/-;MMTV-cre and the p53fl/fl ;MMTV-cre transplant model. miRNA expression data for 41 mouse primary mammary tumors and 5 mouse normal mammary glands
Project description:Analysis of miRNA expression in human breast cancer samples with Agilent's miRNA arrays. These samples are part of a study where we have investigated the mammalian cell proliferation control network consisting of transcription regulators, E2F and p53, their targets, and a family of 14 microRNAs. We observed that indicative of their significance, expression of these microRNAs is down-regulated in senescent cells and in breast cancers harboring wild-type p53. These microRNAs are repressed by p53 in an E2F1-mediated manner. Abstract of paper: Normal cell growth is governed by a complicated biological system, featuring multiple levels of control, often deregulated in cancers. The role of microRNAs in the control of gene expression is now increasingly appreciated, yet their involvement in controlling cell proliferation is still not well understood. Here we investigated the mammalian cell proliferation control network consisting of transcription regulators, E2F and p53, their targets, and a family of 14 microRNAs. Indicative of their significance, expression of these microRNAs is down-regulated in senescent cells and in breast cancers harboring wild-type p53. These microRNAs are repressed by p53 in an E2F1-mediated manner. Furthermore, we show that these microRNAs silence anti-proliferative genes, which themselves are E2F1 targets. Thus, microRNAs and transcriptional regulators appear to cooperate in the framework of a multi-gene transcriptional and post-transcriptional feed-forward loop. Finally, we show that, similarly to p53 inactivation, overexpression of representative microRNAs promotes proliferation and delays senescence, manifesting the detrimental phenotypic consequence of perturbations in this circuit. Together these findings position microRNAs as novel key players in the mammalian cellular proliferation network. Keywords: Breast Cancer, miRNA, p53. 18 Primary human breast cancer samples analyzed for their miRNA expression. From two to four replicates were performed for each sample. Quality check (QC) were performed with Feature Extraction 9.1.3.44 and arrays not passing QC were excluded
Project description:MicroRNAs (miRNAs) are small, non-coding, endogenous RNAs involved in many human diseases including breast cancer. miRNA expression profiling of human breast cancers has identified miRNAs related to the clinical diversity of the disease and potentially provides novel diagnostic and prognostic tools for breast cancer therapy. In order to further understand the roles of miRNAs in association with oncogenic drivers and in specifying sub-types of breast cancer, we performed miRNAexpression profiling on mammary tumors from eight well-characterized genetically -engineered Mouse (GEM) models of human breast cancer including MMTV–H-Ras, -Her2/neu, -c-Myc, -PymT, –Wnt1 and C3(1)/SV40 T/t-antigen transgenic mice, BRCA1fl/fl;p53+/-;MMTV-cre and the p53fl/fl ;MMTV-cre transplant model. As supplementary data
Project description:MicroRNAs (miRNAs) are small, non-coding, endogenous RNAs involved in many human diseases including breast cancer. miRNA expression profiling of human breast cancers has identified miRNAs related to the clinical diversity of the disease and potentially provides novel diagnostic and prognostic tools for breast cancer therapy. In order to further understand the roles of miRNAs in association with oncogenic drivers and in specifying sub-types of breast cancer, we performed miRNAexpression profiling on mammary tumors from eight well-characterized genetically -engineered Mouse (GEM) models of human breast cancer including MMTV–H-Ras, -Her2/neu, -c-Myc, -PymT, –Wnt1 and C3(1)/SV40 T/t-antigen transgenic mice, BRCA1fl/fl;p53+/-;MMTV-cre and the p53fl/fl ;MMTV-cre transplant model.
Project description:MicroRNAs (miRNAs) are small, non-coding, endogenous RNAs involved in many human diseases including breast cancer. miRNA expression profiling of human breast cancers has identified miRNAs related to the clinical diversity of the disease and potentially provides novel diagnostic and prognostic tools for breast cancer therapy. In order to further understand the roles of miRNAs in association with oncogenic drivers and in specifying sub-types of breast cancer, we performed miRNAexpression profiling on mammary tumors from eight well-characterized genetically -engineered Mouse (GEM) models of human breast cancer including MMTV–H-Ras, -Her2/neu, -c-Myc, -PymT, –Wnt1 and C3(1)/SV40 T/t-antigen transgenic mice, BRCA1fl/fl;p53+/-;MMTV-cre and the p53fl/fl ;MMTV-cre transplant model. As supplementary data miRNA expression data for 3 mouse primary mammary tumors and 8 mouse normal mammary glands from different mouse strains
Project description:The tumor suppressor gene p53 is frequently mutated in human breast cancer and is a marker for poor prognosis and resistance to chemotherapy. Transplantation of p53-null mouse mammary epithelium into syngeneic wild-type mice leads to normal mammary gland development followed by spontaneous mammary tumors that recapitulate many of the phenotypic, molecular, and genetic features of human breast cancer. Using this genetically engineered mouse model, we have examined the molecular mechanisms underlying tamoxifen-dependent tumor prevention. To determine whether the changes observed in the ERα cistrome after tamoxifen exposure are reflected in changes in estrogen responsive gene signatures in p53-null mammary epithelial cells (MECs), we performed global gene expression analysis by microarray profiling of MECs isolated from control and tamoxifen-exposed mice 4 weeks after tamoxifen withdrawal and treated with E2 for 8h. We identified 245 differentially regulated genes (P<0.01 and FC>1.4). Of these, 177 genes (72%) were persistently upregulated and 68 genes (28%) were persistently downregulated after transient exposure to tamoxifen. These results indicate that transient exposure to tamoxifen leads to lasting intrinsic changes in gene expression profiles of p53-null mammary epithelial cells that persist after tamoxifen withdrawal.