Project description:Structural genetic variants like copy number variants (CNVs) comprise a large part of human genetic variation and may be inherited as well as somatically acquired. Recent studies have reported the presence of somatically acquired structural variants in the human genome and it has been suggested that they may accumulate in elderly individuals. To further explore the presence and the age-related acquisition of somatic structural variants in the human genome, we investigated CNVs acquired over a period of 10 years in 86 elderly Danish twins as well as CNV discordances between co-twins of 18 monozygotic twin pairs. Furthermore, the presence of mosaic structural variants was explored.
Project description:We perfomed copy number analysis of young and old monozygotic twin pairs and young and old single-born individuals to identify somatic copy number changes that occur with age in blood DNA.
Project description:We perfomed copy number analysis of young and old monozygotic twin pairs and young and old single-born individuals to identify somatic copy number changes that occur with age in blood DNA. DNA from peripheral blood was run on Illumina genotyping arrays and the R and B-allele-frequency data were used to identify somatic copy number events
Project description:The exploration of copy number variation (CNV), notably of somatic cells, is an understudied aspect of genome biology. Any differences in the genetic make-up between twins derived from the same zygote represent an extreme example of somatic variation. We studied 19 pairs of monozygotic twins with either concordant or discordant phenotype using two platforms for genome-wide CNV analyses and show that CNVs exist within pairs in both groups. These findings impact our views of genotypic and phenotypic diversity in monozygotic twins, and suggest that CNV analysis in phenotypically discordant monozygotic twins may provide a powerful tool in identifying disease predisposition loci. Our results also imply that caution should be exercised with the interpretation of disease causality of de novo CNVs found in patients based on analysis of a single tissue in routine disease-related DNA diagnostics Keywords: copy number variation, concordant and discordant monozygotic twins
Project description:The exploration of copy number variation (CNV), notably of somatic cells, is an understudied aspect of genome biology. Any differences in the genetic make-up between twins derived from the same zygote represent an extreme example of somatic variation. We studied 19 pairs of monozygotic twins with either concordant or discordant phenotype using two platforms for genome-wide CNV analyses and show that CNVs exist within pairs in both groups. These findings impact our views of genotypic and phenotypic diversity in monozygotic twins, and suggest that CNV analysis in phenotypically discordant monozygotic twins may provide a powerful tool in identifying disease predisposition loci. Our results also imply that caution should be exercised with the interpretation of disease causality of de novo CNVs found in patients based on analysis of a single tissue in routine disease-related DNA diagnostics Analysis of copy number variability in concordant healthy monozygotic twin pairs as well as three monozygostic twin pairs discordant a Parkinsons disease (PD) phenotype using the Illumina HumanHap 300 dead chips. Keywords: SNP data
Project description:The exploration of copy number variation (CNV), notably of somatic cells, is an understudied aspect of genome biology. Any differences in the genetic make-up between twins derived from the same zygote represent an extreme example of somatic variation. We studied 19 pairs of monozygotic twins with either concordant or discordant phenotype using two platforms for genome-wide CNV analyses and show that CNVs exist within pairs in both groups. These findings impact our views of genotypic and phenotypic diversity in monozygotic twins, and suggest that CNV analysis in phenotypically discordant monozygotic twins may provide a powerful tool in identifying disease predisposition loci. Our results also imply that caution should be exercised with the interpretation of disease causality of de novo CNVs found in patients based on analysis of a single tissue in routine disease-related DNA diagnostics Analysis of copy number variability in concordant healthy monozygotic twin pairs as well as three monozygostic twin pairs discordant a Parkinsons disease (PD) phenotype using the Illumina HumanHap 300 dead chips. Genotyping using the HumanHap300-duo bead chip from Illumina, GEO accession GPL5711
Project description:We examined six pairs of monozygotic twins discordant (MZD) for schizophrenia and identified copy number variation (CNV) and single nucleotide polymorphism (SNP) differences between affected and unaffected co-twins using the Affymetrix Genome Wide SNP 6.0.
Project description:We examined six pairs of monozygotic twins discordant (MZD) for schizophrenia and identified copy number variation (CNV) and single nucleotide polymorphism (SNP) differences between affected and unaffected co-twins using the Affymetrix Genome Wide SNP 6.0. Affymetrix SNP arrays were performed according to the manufacurer's protocol on DNA extracted from whole blood CNV analysis was done using Affymetrix Genotyping Console 4.0 and Partek Genotyping Suite
Project description:There is growing evidence that genomic DNA sequence changes occur in individual somatic cells during the lifetime of an individual and accumulation of these changes may influence aging and disease. In light of this, and contradicting reports regarding discordant copy number profiles between MZ twins(BARANZINI et al. 2010; BRUDER et al. 2008), we set out to identify de novo somatic copy number mutations in DNA from blood for MZ twin pairs of Mexican American descent who were participants of the San Antonio Family Heart Study (SAFHS) or San Antonio Family Diabetes/Gallbladder study (SAFDGS). By applying circular binary segmentation (CBS) to B-allele ratio differences we determined that the 3 MZ twin pairs in this study had concordant copy number profiles. We also detected 2 de novo germ-line CNVs in 2 MZ twin pairs from the SAFHS. This study includes data for 4 monozygotic (MZ) twin pairs, and both parents of 2 of these MZ twin pairs. The purpose of this study was to compare concordance of copy number profiles between MZ twins.
Project description:Forensic association of hair shaft evidence with individuals is currently assessed by comparing mitochondrial DNA haplotypes of reference and casework samples, primarily for exclusionary purposes. Present work tests and validates more recent proteomic approaches to extract quantitative transcriptional and genetic information from hair samples of monozygotic twin pairs, which would be predicted to partition away from unrelated individuals if the datasets contain identifying information. Protein expression profiles and polymorphic, genetically variant hair peptides were generated from 10 pairs of monozygotic twins. Profiling using the protein tryptic digests revealed that samples from identical twins were considerably more alike in profile than unrelated individuals among the twins. The data did not indicate that the degree of difference within twin pairs increased with age. In parallel, data from the digests were used to detect genetically variant peptides that result from common non-synonymous single nucleotide polymorphisms in genes expressed in the hair follicle. Compilation of the variants permitted sorting of the samples by hierarchical clustering, permitting accurate matching of twin pairs. The results demonstrate that genetic differences are detectable by proteomic methods and provide a framework for developing quantitative statistical estimates of personal identification that increase the value of hair shaft evidence.